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PREFACE

This book contains refereed papers presented at the Fifth IEEE Workshop on
Neural Networks for Signal Processing (NNSP'95) at the Royal Sonesta Hotel,
Cambridge, MA, on August 31 st - September 2nd, 1995.

NNSP'95 was sponsored by the Neural Networks Technical Committee of the
IEEE Signal Processing Society, in cooperation with the IEEE Neural Network
Council and with co-sponsorship from ONR/ARPA and NSF (through CBCL,
the Center for Biological and Computational Learning at MIT). The Workshop
is designed to serve as a regular forum for researchers from universities and
industry who are interested in interdisciplinary research on neural networks for
signal processing applications. NNSP'95 offers a showcase for current research
results in key areas, including learning algorithms, network architectures,
speech processing, image processing, computer vision, adaptive signal
processing, medical signal processing, digital communications and other
applications.

Our deep appreciation is extended to Prof. Abu-Mostafa of Caltech, Prof. John
Moody of Oregon Graduate Institute, Prof. S.Y. Kung, of Princeton U., Prof.
Michael I. Jordan of MIT and Dr. Vladimir Vapnik of AT&T Bell Labs, for
their insightful plenary talks. Thanks to Dr. Gary Kuhn of Siemens Corporate
Research for organizing a wonderful evening panel discussion on "Why Neural
Networks are not Dead". Our sincere thanks go to all the authors for their
timely contributions and to all the members of the Program Committee for the
outstanding and high-quality program. We would like to thank the other
members of the Organizing Committee: Finance Chair Dr. Judy Franklin of
GTE Lab. Inc., and Local Arrangements Chair Mary Pat Fitzgerald of MIT, for
the superb job they have done.

It is worth mentioning that this year we did not generate any post office mail
and the whole NNSP'95 organization and review of papers were handled
electronically. Special thanks are extended to the Publicity Chair Marney
Smyth of MIT for maintaining the NNSP'95 WWW home page (URL:
http://www.cdsp.neu.edu/info/ nnsp95.html) and running an effective publicity
"campaign" on the Internet. Also to Anna Patch of the Communications and

Digital Signal Processing (CDSP) Center for research and graduate studies at
Northeastern U. for managing the database, and to Stylianos Markogiannakis
of CDSP for writing the software that allowed us to handle very efficiently the
review process. We plan to make this software available on ftp for future
conference organizations.
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Finally vlc would like to acknowledge Dr. Barbara Yoon of ARPA for her
continued enthusiasm and support in this emerging cross-disciplinary fleld.

Elas S. Manolakos. CDSP Center, Northeastern U.
Federico Girosi. CBCL, MIT
John MNakhoul. BBV
Beth \Vilson. Raytheon Company
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Missing and Noisy Data in Nonlinear

Time-Series Prediction

Volker Tresp and Reimar Hofmann
Siemens AG, Central Research

81730 Munich, Germany*

Abstract

We discuss the issue of missing and noisy data in nonlinear time-
series prediction. We derive fundamental equations both for prediction
and for training. Our discussion shows that if measurements are noisy
or missing, treating the time series as a static input/output mapping
problem (the usual time-delay neural network approach) is subopti-
mal. We describe approximations of the solutions which are based on
stochastic simulations. A special case is K-step prediction in which
a one-step predictor is iterated K times. Our solutions provide error
bars for prediction with missing or noisy data and for K-step predic-
tion. Using the K-step iterated logistic map as an example, we show
that the proposed solutions arc a considerable improvement, over sim-
ple heuristic solutions. Using our formalism we derive algorithms for
training recurrent, networks, for control of stochastic systems and for
reinforcement learning problems.

1 Introduction

Missing data in time-series prediction are a commonl problem in many appli-
cations. The goal is to obtain valid predictions even if sorie measurements
become unavailable or are not recorded. Similarly, training data are often
incomplete. In this paper we analyze this problem from a probabilistic point,
of view. In previous publications the problem of learning and prediction with
missing and noisy features in (static) estimation problems was examined (see,
for example [2, 3, 4]). The solutions for botlh predict ion and learning consisted
of integrals over the unknown variable weighted by the conditional probability
density of the unknown variable given the known variables. The basic idea is
the same for missing data in time-series prediction, but here, we can exploit
the fact that the missing measurement itself is part of the time series. Similar

*Volker.Trespnzfe.siemens.de, Reiinar.I-lofinarinn'zfe.sicmens.de

0-7803-2739-X/95 $4.00 © 1995 IEEE
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It is convenient to unfold the system in time which leads to the system

shown in Figure 1. The realizations of the time series are now random vari-

ables in a probabilistic network. Our problem is to predict Yt using the
available information. According to our assumptions, the joint probability

density is
t

P(Y, Y2, ... ,t) = P(YI, , YN) 1[ P(YI Y1-,, YI-N). (4)
/=N+1

Let's now assume that Yt-k with k < N is missing. Let yp" {yt-k} and let
pYm = {Yt-1 ... Yt-k-NI \ {Yt-k}. We can calculate the expected value of the

next realization of the time series as

E(ytIVt-1) = J f(PYti-,I..Y...i tki..,Yt-N) P(.'pliy") dy'p (5)

where MAt-I stands for all measurements up to t - 1. The last equation is
the fundamental equation for prediction with missing data. Note, that the

unknown yt-k is not only dependent on realizations of the time series previous
to t - k but also on measurements after t - k. The reason is that the variables
in y' U Yt form a minimal Markov blanket of yt-k in the Bayesian net in Fig-
ure 1. A minimal Markov blanket in a Bayesian network consists of the direct
parents, the direct successors of a variable and all direct parents of a variables
direct successor. In our case, the direct, successors are Yt ... Yt-k+l, the direct

parents are Yt-k-i1 . . Yt-k-N and the direct parents of a variables direct suc-

cessor are Yt-i... Yt-k-N+±. The theory of Bayesian and Markov networks
now tells us that a variable is independent of all other variables in the network
if the variables in the Markov blanket are known (see Figure 1). This discus-
sion shows that simply approximating Yt-k • f(Yt-k-1, yt-k-2,. . ., Yt-k-g)

is suboptimal. The required conditional density in Equation 5 is (recall that

P U = Yt-k)

P (Yu1 ly re) OC P ( t-11Yt- 2, . . ., Yt-k, ... Yt-I-N)

xP(Yt- 2 lpt-, ... ,yt-k, - - . , yt-2-N) . . . P(yt-k Yt-t-k1 ... M yt-k-N).

This expression can be evaluated easily using Equation 1 or in the Gaussian
noise case Equation 3.

2.2 Several Missing Realizations

From the preceding discussion it should be clear that nothing changes if the
missing realizations are separated by more than N known realizations. Then
the Markov blankets of the missing variable are still completely known. If this
is not the case we obtain Equation 5 where yp Cq {Yt-i, Yt-2k..., yt-NJ} denote
all missing instances between t - 1 and t - N of the time series and where
Yp Cq {Pt-i, Yt-2,. .. , YP4 denote the set of all measurement up to i - 1. Also

P(y"Y) CC P(Yt- 1 , ... , Y2, Yd) where the right-hand side is obtained from

Equation 4.
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2.3 Training with Missing Realizations

We consider the case that Yl,..., yt are possible realizations. Let ym C
{Yl,..., Yt } denote the set of all measurements and yU = {y1,...,yt I\ y" the
set of all unknowns. Our model is assumed to be a neural network parame-
terized by a set of weights w

f (Yt-1,...- , Yt-N) Rý NN. (Yt-1,., Yt-N)

or any other kind of parameterized function approximator. The log-likelihood
function of the time series is L = logf PM(yt, Yt-, ... , Y2, yl) dyu. Here

t

pM(yt, Yt-l,...,Y2, Yl)-= pM(yN,...,Yl) JJ pMM(y1lY-I" YI-N)" (6)

l=N+1

is an approximation to the joint density and

pM(yt1Yt-i, Yt-2, .. . , Yt-N) = Pý(yt - NNg(yt-i, Yt-2, .. ., Yt-N)). (7)

For backpropagation learning or other gradient based learning algorithms we
need the gradient of the log-likelihood with respect to the weights which is1

Ow a 0JogPM(Y1Yt-1,"'"YL-N) pM(u(1)ym) dyu(l). (8)
/=N+I

In case of Gaussian noise, OL

t: f(y - NNw(yu-l,...,Y1-N)) ONNw(yx,... YNPM) (yu)I dyu().
/=N+W

where yu•() = yU n {YI,... Y-N} are the missing realizations in the input of
the network. The last equation shows that if all Y1 ... YL-N are known, the
integral "disappears".

3 Prediction and Training with Noisy Mea-
surements

Let again Yt = f(Yt-1, Yt-2, ... , Yt-N) + Ct but now we assume that we have
no access to yt directly. Instead, we measure zt = Yt + 6t where &5 is inde-
pendent zero-mean noise. Let z = {z .. .zt- 1 } and y = {Yl ... yt}. The joint
probability density is

t t

P(y,z) = P(yN,...,yI) [I P(YlIY-l,'",Y-N) H P(ZiIyl).
I=N+I 1=1

iAssuming known initial conditions for yl,.• ,yN. In this paper, we use repeatedly

that if f(x) > 0, then of-() = a f(x).

4



The expression for the expected value of the next instance of the time series
(prediction) is

E(yt Iz) = ff(yt-l,., yt-N) PY-, yI-NIZ) dyt-l ... dyt-N. (9)

Similarly the gradient of the likelihood for training can be calculated. For
the special case of Gaussian noise, with z = {z ... zt}

5W cc J(y, - NNu,(yl, -I Y1N)) 19w/=N+I 0t

xP P (yI, . . ., yI-NIz) dyl .. .dyt-N.

4 Approximations

4.1 Approximations of the Solution

In general, if f() is a nonlinear function the equations we obtained for predic-
tion and for calculating the gradient cannot be solved analytically and must be
approximated numerically. We will discuss a solution based on Monte Carlo
sampling. Note that all solutions have the general form f h(u, m)P(ujm)du
where u is the set of unknown variables and M. is the set of known variables.
An integral of this form can be solved by drawing random samples of the
unknown variables following P(ulm). Let ul, ... , us denote these samples.
Then we can approximate

h(u, m)P(ulm)du ý_ h(u',

The problem now reduces to sampling from P(ulrn). Let's first assume that
only one variable is missing. Then the problem reduces to sampling from
a one-variate distribution which can be done using sampling-importance-
resampling or other sampling techniques [1].

If more than one realization is missing the situation becomes more compli-
cated. The reason is that the unknown variables are in general dependent and
we have to draw from the distribution of all unknowns. A general solution
is Gibbs sampling. In Gibbs sampling we initialize the unknown variables
either randomly or better with reasonable initial values. Then we select one
of the unknown variables ui and pick a sample from P(uina, u \ ui) and set ui
to that value. Then we repeat the procedure for the next unknown variables
and so on. Discard the first samples. Then samples are produced with the
correct distribution. This of course means that we might have to sample all
unknowns which ever occurred in the time series. In practice, one would re-
strict the sampling to some reasonable chosen time window. Note, that in the
missing data case, if N consecutive values are known the coupling is broken

5
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Figure 2: Left: Samples of the logistic map. Right: The mean squared error as
a function of K in K-step prediction. The iterated solution (continuous) and
the Monte-Carlo approximation with 3 (dotted) and 20 samples (dashed) are
shown. Only for one-step prediction, the iterated model is optimal. Note, that
by sampling we obtained an estimate of the prediction error of the iterated
system (assuming a correct model).

where we have assumed that K > N. If K < N substitute measured values
for k > K. Note, that simply iterating the model K-times as it is usually
done in K-step prediction is suboptimal in nonlinear time-series prediction
if K > 1!

In our experiments, we wanted to find out to which degree our solutions
are superior to simply iterating the time series in K-step prediction. We used
the noisy logistic map Yt = 4 zt-1(l - zt-1) + ct where

S yt if0_<yt <1
zt Yt - 1 if Yt > 1

Yt + I if Yt < 0

where ct is uncorrelated Gaussian noise with a variance of o-2 = 0.01. Figure 2
(left) shows the time series. Figure 2 (right) shows the mean squared error
as a function of K. Shown are the iterated system (continuous line) and
the solution following our sampling approach. As expected, for K = 1 the
interated solution is optimal, but for K > 1, the Monte-Carlo approximation
even with only few samples is far superior.

6 Extensions

6.1 Error Bars

Sampling provides much more information than just expected values. In all
of the cases considered earlier - missing or noisy data, K-step prediction -
we can also easily obtain error bars of the predicted value by calculating the
variance (or the covariances) in the samples produced (Figure 2).
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fyrO1.:_-1 Ow (Y( n - f(Y 11.- 1, uM-lM))]

P(Yi .... Y) dyl ... dyj

This solution can be approximated using stochastic sampling (see the fol-
lowing discussion). To avoid infinite control actions, it might be useful to
introduce a cost which takes control actions into account or which adds a
penalty for large weights in NNI.

Stochastic Control. Now assume that the control action is stochastic utt
NN, (yt) + 6t and that we allow that the cost depends on the control action.
Then,

aE(cost) •__al/(y,)
11 I.)Y1C (YIu4Z [ * ý (uo,ý - NA7Ut,(yrn))] (12)

Tn=1

xP(yi! . .,Y, uo,.. ., ut- 1 ) dy 1 ... dy 1dul ... dIL-1.

Note, that we do not. need a model of the process f() any more! Tins is
a result of the fact that, we execute stochastic control. The system -tries"
different actions and adapts the controller to favor actions which lead to low
costs. We simply simulate the system (or collect data on the real process) and
execute control actions. In the course of training we might want to reduce the
noise variance on the control to eventually converge to deterministic controls.
Let's assume that we generated S time series of the process by starting at

1 = I and iterating until T generating samples u' and y'. For each experiment
s, we iterate for 2, ... ,T (a' = 0)

a•- 1+7 1-• aNN(Y (y) -NN ,(y'))

and e 1 e_ + C(yI, ul)a•_ . Then aE(cost)/auw R 1/Se>= IeT.

Recurrent Neural Networks. The previous equations also contain an algo-
rithm for training recurrent neural networks. Assume Yt = NN. (yt-1) + ct.
Define C(yt) = 11bt(y' - yt)[H2, -y= 1. Here, Yd is a target at time t and bt is a
vector with bti = 1 if the i-th component of y1 is measured and zero otherwise
(i. e. for the hidden variables). Then

ON N. (yl y- 1) N1a = a'I + ow (yl - NA y

and ec - e_ 1 + b(y - a . Finally, OE(cost)/aw ; E Z= 1 ec"

On-line Adaptation. Consider stochastic control again. We let T -4 no.
We now assume that at every time-step, we start a new experiment s. Then
let a, - •= a' and

a aI = "mal1 +N (y7) (u' - NN. (yl))

9
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1 Abstract

A locally linear approach based on Kohonen self-organizing feature mapping
(SOFM) is proposed for the modeling of non-linear time series. This approach
exploits the neighborhood preserving property of Kohonen feature maps. The key
difference is that the local model fitting is performed directly over a matched
neighborhood of the constructed SOFM neural ficid. The initial results show that
this neural network scenario is an effective approach for local modeling of low
dimensional non-linear processes.

2 INTRODUCTION

Farmer and Sidorowich have used a local approximation for the prediction of
chaotic time series throughout state space. With that approach, the time series is
first embedded in a state space using delay coordinates, and the underlying
nonlinear mapping is inferred by a local approximation using only nearby states.
This approach can be easily extended to higher order local polynomial
approximations. The experiment by Farmer and Sidorowich shows that the linear
model is an effective local approximation, while higher-order polynomials in
higher dimensions are not significantly better than those obtained with first order.
From the point of view of signal processing, the local linear approximation is
derived as a state-dependent AR modeling, by Singer, et al.. This derivation shows
that a single plane through the origin in state space is replaced with state-dependent
approximation planes to account for the non-linear dynamic process. A good
performance is attained at the cost of a large memory and inefficient computation
for both the state space representation and local state search. This problem
becomes worse with longer signal history, although the memory limitation can be
alleviated with dynamical updating of data samples. The inefficient computation
for nearby state search makes the implementation of this approach even harder.
This is due to the fact that such search procedure is performed among the
accumulated signal history without significant structuring.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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Our observation is that the computation in the above scenario can be facilitated
in two ways. First, the signal representation can be streamlined with a vector
quantization procedure. That is, the local model fitting is based on statistically
averaged prototypes instead of the original state vector samples. Secondly, the
nearby state search can be significantly simplified with all prototypes organized
according to a certain metric such as pattern similarity. With a vector quantization
procedure, the model estimation accuracy depends on the compactness of this
prototype set. An optimal representation is found with respect to both the
approximation performance and memory limitation. The beget advantages will
make such local modelling more practical and feasible. Based on the above
observation, we propose for local modeling a neural network vector quantization
representation as an alternative to the state space representation.

3 METHODOLOGY

3.1 NonLinear Processes and Locally Linear
Prediction

Different local prediction approaches were tested by Farmer and Sidorowich,
and Casdagli for a variety of low-dimensional chaotic systems. In this work, we
pursue the locally linear approach, but instead of using the data samples directly,
the local fitting is done over the output of the SOFM neural field.

A given time series x(t) can be embedded in a state space using Takens
approach,

x(t) = [x(t),x(t-T), ... , x(t- (N- 1),r)I

where ' is a delay time. For a given non-linear dynamical system of dimension
D, a minimal requirement is N > D. The predictive relationship between the
current state x(t) and the next value of the time series can then be expressed as [5]

x(t+T) =fT(x(t)) (1)

The problem of predictive modeling is to find the mapping fTf RN to R1. A
local predictor is constructed based on the nearby neighbors of x(t), that is, fitting
a polynomials to the pairs (x(ti), x(ti+T)) with x(tr) being the nearest neighbors of
x(t) for t1<t. The original signal can also be viewed as an evolution of the state x(t)

of a dynamical system in RN

x(t+7) =fT(x(t)) (2)

where fT is the predictive mapping from RN to RN. With simple matrix
operations, fT can be converted tofr Such predictive model concept is illustrated

12



in Fig. 1. The empty circles represent the current state x(t) and its evolution x(t+ 7),
while the solid squares represent the nearby neighbors x(ti) and future evolution
x(ti+7), where ti<t. A simple model estimation is to fit a linear polynomial to pairs
(x(ti), x(ti+T))

•/• •---- X :--) A

Continuous
input space Feature map

Fig. 1 Symbolic illustration Fig. 2 Feature Mapping

of state prediction

From the point of view of signal processing, Singer, et al. [4] derived the
locally linear prediction as an AR model generalization. In discrete time, a non-
linear process can be described by a Nth order difference equations of the form

x (k + 1) = f(x (k)) + u (k) (3)

T
where x(k) = [x(k),x(k-1),...,x(k-N+l)1 ,f(x) represents the

non-linear map from RN to R1 , and u(k) is the white noise innovation term. Due to
the statistical Markov structure of the nonlinear dynamics, we have

P(x(k+l)lx(i),O<i<k) = P(x(k+l)lx(k)) (4)

Based on minimum mean square error criterion, the estimated value of x(k+ 1)
is

1 (k+ 1) = E[x(k+ 1)I x(k)I = E[f(x(k)) +u(k)l (x(k))] = f(x(k))
(5)

Since the realization of the unknown dynamics fix) can be observed from

x(k+1) =f(x(k)) +u(k) (6)

that is, the signal history composes the map from state space of dimension N
to a scalar space, the solution to the estimation of x(k+l) can be solved by

13



interpolatingf(x) from noisy signal samples. Among several methods, as shown by
Singer et al., the local modelling is superior and simpler under the condition that
the given dynamics is locally smooth and a long enough signal history is available.
Therefore the local linear prediction model fitting is implemented as follows. For
the current state x(k), a set of pairs (x(i), x(i+l)) is selected according to the
similarity between x(k) and x(i) where x(i) is one of selected close state space
neighbors and x(i+l) its future value. Thus, the local model approximation
becomes an interpolation problem which can be solved with polynomial fitting.

Following the approach by Singer et al, under the condition thatf(x) is smooth
enough in the vicinity of x(k), fix) can be approximated by the first few terms of
its multidimensional Taylor series expansion,

f(x) =f(x(k)) +VFT(x(k)) (x-x(k)) +...b+aTx = aTx+b
(7)

which is the local linear predictor. The vector and scalar quantities of a and b
are estimated from the selected pairs (x(i), x(i+l)) in the least square sense. To
secure a stable solution, more than N pairs must be selected.

In general, the above local model fitting is composed of two steps: a set of
nearby state searches over the signal history and model parameters fitting. For a
given signal, this procedure results in a set of local model parameters which, when
pieced together, provide a global modeling of the dynamics in state space. Since
the state search is performed over the whole signal history a lot of redundant
computation results which in turn hinders effective implementation of this
approach.

3.2 Localized Signal Representation with SOFM
modeling

Instead of direct sample collection from the signal history, we propose to
alleviate these problems by the use of a Kohonen self-organizing feature map
neural network [7]. The SOFM has very interesting properties for time series
modelling. Let 0, X, A denote the SOFM mapping, input sample space and the
discrete output space respectively. When the network converges to its final stable
state following a successful learning process, it displays four major remarkable
properties:

1. The SOFM map (D is a good approximation to the input space X. This
property is important since it provide a compact representation of the given input
space.

2. The feature map 4 naturally forms a topologically ordered output space
such that the spatial location of a neuron in the lattice corresponds to a particular
domain in input space. The advantage of this feature is that it can simplify local
modeling of the input signal X embedded in the A space.
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3. The feature map D embodies a statistical law. In other words, the input with
more frequent occurrence occupies a larger output domain of the output space A.
This property helps to make the SOFM an optimum codebook of the given input
space.

4. A space dimension reduction is attained via the feature map 4D. That is, the
continuous input space is mapped to a discrete output space with lower dimension.
This property makes the simple architecture of codebook representation feasible.

The straightforward way to take advantage of the above properties for time
series modelling is to create a SOFM from the input signal. Since such feature map
D provides a faithful topologically organized output of the input vectors x E X, the
local model fitting can then be performed over the compact codebook domain A.

The proposed non-linear modelling scenario follows three steps: a.
Reconstruction of the state space from the input signal; b. Embedding the state
space in the neural field; c. Estimation of the locally linear predictors.

a) Reconstruction of the state space from the training signal. Following the

approach by Takens, a sequence of N+1 dimensional state vectors [x(n)T, x(n+t)]T

is created from the given training time series, where

x(n) = [x(n- (N-1)),x(n- (N-2)r), ... , x(n)] T andristhe
appropriate time delay where N_ ŽD and D the dimension of the underlying
dynamical process.

b) Embedding the state space in the neural field. This step is accomplished via
the Kohonen learning process. With each vector-scalar pair [x(n), x(n+])]
presented as the input to the network, the learning process of Kohonen feature

mapping algorithm adaptively discretizes the continuous input space X c RN+ 1

into a set of K disjoint cells A to construct the mapping D: X--4A. This process
continues until the learning rate decreases close to zero and the neighborhood
function covers about one output unit. After learning, a neural field representation
A of the input space X via the constructed mapping relationship 1 is formed in
terms of a set of disjoint units topologically organized in the output space (Figure
2).

c) Estimation of the locally linear predictors. For each element ui = A, its
local linear predictor in terms of [aiT, bi] is estimated based on x. c A, which is a

set of L elements in the neighborhood of u. including ui itself. See Figure 2. Each

T T N+1
element ui, has a corresponding weight vector [wi, W (N + 1)] E R , where

W = [wi(1) i(2) i( . The local prediction model [aiT, bi] is fitted in

the least-square sense to the set of weights in a, i.e.
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=(P+l) b+ j (8)

To ensure a stable solution of the above equations, cti must have more than NI+
elements. TheIeaf"ter for each outnut unit v•cA, there corresponds a unique

linea-hy local model function f(o) in terms of the vector-scalar parameter pair

The global dynamics of the given process can be described by the set of all the
const-7•,ted local models pieced together. For an input state vector x(n)=[x(P-N+l),

r.... -2 •,.9,x(n)]r the matched prototype element ai, e A is found based on the

S07/. competition among all elements in A. The predicted value x(n+l) is
obtained! by evaluating .f(o) at 4~n)=[x(n.-N+l), x(n-N+2),..... x(n)]T

Tx(r+- ) =f(a(o),b(o),i(n)) = b( 0io) +n (Uio)•(n) (9)

L_ a similar manner, a K-step prediction x(n+IK based on -'(n) can also be
obt-,a'ned b, it1aztive prediction, i.e. feeding the output back to the input,

x (P - X) fx fx - I (.f!I (, '(vi.), b (ujio), -ý (n)) (10)

fj = f(o) is the prediction function at step j. That is, the first

prediction generates a new state, which is used to find the new local model
functioo. Evaiuation of the new local model function at the new state produces in
turn a new' prediction until the final K-step prediction. Compared with the direct
pedilction, this recursive prediction has the advantage of higher accuracy [2], [12].

P/,PLiE IT TATJIT AND EKPELR i/EN TTAL
mLUT5

A non-linear time series from the Mackey-Glass system is modeled with the
proposed scenario. A total of 2500 neurons, arranged on a 50 X 50 square lattice,
constitute the SOFM output space. The dimension of the weight vectors wi(n) was
chosean, as 8, so the dimension of the state input during the training process is 9
(117,A). The learning rate and evolution of neighborhood function in eq. (14) and
(15) were used vwith ar=!, b =!0-3, aG=l/ 3 0, b c=.6xl0 4 . A 10,000 samples
Nvackey-Glass time series is generated with d=30 and fs=l/6 Hz. The Kohonen
SOFlM! network is trained with this segment of time series for five epochs (50,000
samples). After training the weight vectors are frozen for local model estimation.
A typical post-training output trajectory corresponding to 400 consecutive input
samles is as shown in Figure 3.



As shown in section 2, to ensure a stable solution in the least square sense, the
subset xi must contain at least N+1 neighbors for stable model estimation. We take
all 21 neurons surrounding the neuron ui in the output space as its neighborhood

subset x. c(A to estimate the corresponding local linear prediction function

fi = f() Another different 5,000 sample Mackey-Glass time series is taken

to test the prediction performance of the estimated local prediction model set. The
testing is performed with multi-step prediction ranging from 1 up to 20 samples
ahead. Iterative prediction (i.e. use the predicted values as new inputs) is applied
for multiple-step prediction. The mean squared error normalized by the variance of
the original signal is shown in Fig. 4, and it starts at .06 and increases to .4 for 30
step ahead prediction.

If the averaged Euclidean distance between weight vectors of two neighboring
neurons is taken as the resolution of the neural field A, it is obvious that the larger
its dimension the finer the resolution, which in turn provides more accurate local
model estimation. With this notion, three SOFM networks with different lattice
dimension (50 X 50, 60 X 60, 70 X 70) are compared in terms of the MSE for 20
step prediction steps and the result is consistent with the above observation as
shown in Fig. 5. The MSE error decreases from 0.22 to 0.18.

50 . . .i

o0 5 10 15 20 25 30 3 40 45 5

Fig. 3 The output trajectory

Finally, Figure 6 shows an autonomous (i.e. the predictor is seeded and then
the output is fed back to its input) 500 point segment of the signal generated by the
local models. This signal clearly shows that the dynamics of the system that
produced the time series have been captured.
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from the neural field, this scenario represents a further in-depth exploration of the
Kohonen feature mapping.

The Kohonen feature map has been used by Walter, et al. for similar purposes.
However, the topologically ordering relationship intrinsic in the construction of the
neural field was not explored in their approach. Instead the desired local models
were adaptively constructed during the network training process. The topologically
organized weight vectors only served for state searching.

The experimental results demonstrate that this Kohonen SOFM scenario is
feasible as an effective approach for non-linear dynamical modeling. We are
presently comparing this approach with others using dynamic neural networks (i.e.
multilayer perceptrons extended with short term memory mechanisms) [12]. One
advantage of the SOFM is the creation of states that can be explored for the
prediction of time varying nonlinear signals.
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ABSTRACT. We describe certain recent results of the first author
concerning the approximation capabilities of neural networks with
one hidden layer. In particular, these results demonstrate the con-
struction of neural networks evaluating a squashing function or a
radial basis function for optimal approximation of the Sobolev spaces.
We also report on our joint work, where some of the first author's
earlier ideas are applied to construct general purpose networks for
the prediction of time series, when the number of independent vari-
ables is known in advance, such as the Mackey- Glass series or thc
flour data.

1. INTRODUCTION

One of the major applications of neural networks is to approximate a func-
tion of several variables. In fact, it is well known that any neural network
training can be thought of as function approximation. A typical example is
the prediction of time series, where it is desired to predict the observation xt
at time t as a function of the s previous observations xt - 1, ,xt-s, where s
is a fixed positive integer.

There are two major problems which arise in this theory. One is to
determine the number of neurons necessary to achieve the approximation
of the target function within a given margin of tolerance. The other is to
develop algorithms to actually construct the approximating networks.

Although the target function is usually unknown, it is customary to as-
sume that it belongs to some known class of functions. A common assumption
is that the function has a certain number, r, of continuous derivatives on the
domain where the approximation is desired. The complexity problem is the
problem of determining the number of neurons required to approximate any
such function in terms of the desired accuracy, the number of independent
variables on which the function depends, and the size of the derivatives as
measured by a suitable norm. Equivalently, the problem is to determine how
much accuracy one can achieve in the approximation of any function in this
class with a given number of neurons. Section 2 of this paper describes some
of the recent work of the first author in this direction.

In designing algorithms for the construction of networks, one may or
may not be able to sample the function at prescribed points. The proofs of
the results described in Section 2 also give a training method in the case the
function may be sampled at prescribed points. In Section 3, we use some
of the earlier ideas of the first author [10] for "universal" approximation of

0-7803-2739-X/95 $4.00 © 1995 IEEE
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functions, where such a sainplhng is not possible. We do need to assume that
the number of variables, on which the function depends, is known in advance.

Our research was supported, in part, by grants from AFOSR and NSF.
We are also grateful to F. Girosi, j. Larsen, J. A. Sorensen and T. Poggio for
their kind encouragement.

2. T1EZORETICAL RESULTS
in [8. 18], Girosi, Poggio and Jones have introduced the notion of a gen eralized
tnTYslatio? neu/work (generalized regalarizalion nelwork in their termriinology).
Let i < d < s, a > I be integers, ý : -d -.R A generalized translation

network ;ith a neaarovs (principal elements) evaluates a function of the form

=a,ýo(A,(.) + bQ) where the A4,cs are d x s real matrices, bk. E R" and
<l; E R ( , case d I 1, we have the usual neural networks

with c as the activation function. In the case d = s, we recover the traditional
radial basis function (RBF) networks, where, in the most traditional setting,
the matrices Ak are required to be all equal to the identity matrix. Girosi,
Poggio and Jones have demonstrated in [8, 18] how the generalized translation
net works arise naturally in applications such as image processing and graphics
as solutions of certain extremal problems.

Motivated (in part) by this work, Mhaskar and Micchelli [14] carried
out an in-depth investigation of the approximation capabilities of the gener-
alized translation networks. Under very general conditions on o, they have
constructed networks that approximate an arbitrary function in the L7 or
uniform_ norm, and illustrated how the smoothness and growth of 0 affect the
degree of approximation of the target function. The networks constructed
in [14] are also capable of providing simultaneous approximation of the tar-
get function and its derivatives, tinder minimal conditions on 0. The main
thrust of [14] is to study what properties of (D have what effect on the de-
gree of approximation; in particular, to gain an insight on how to choose an
activation function, rather than to obtain the best estimates. A preliminary
announcement of some of the results in [14] was made in [15].

In order to discuss the complexity problem further, we need to introduce
some notation. For the sake of simplicity of exposition, we restrict ourselves
to uniform approximation on [0, 1]'. Thus, for f [0, 1]i - R we write

JIlJ := sup f()l. (2.1)
lEt0,!]>

The class of all the output functions of a generalized translation network with
n neurons, each evaluating the activation function 0 and receiving s inputs,
vwill be denoted by Ill;.... We measure the degree of approxitationt of f by
the expression

E,;,.(f) := inf{Jlf - P P p1 .... }. (2.2)

For integer r > 1, the class of all functions f : [0, 1] -+ R having r con-
tinuous derivatives on [0. 1I' will be denoted by IV,,. For a multi-integer
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k = (kl,..., k,) E ZV, the notation 0 < k < r means that 0 < kj : r for
I < j < s and we write IkI = Ek=, Ikj . If f G W,,,, its Sobolev norm is
defined by

Ilfllw•,, 1D IDkfII (2.3)
O<k<r

where the partial derivatives Dkf are defined by

Dkf ._ 0lklf

Since the target function is usually unknown, the quantity of interest in this
theory is

Eo;nrs ... supE;(f) : _<111W K 1}. (2.4)

We observe that any function in Wrs can be normalized so that [If wr,_ <
1. Hence, Eo;n,r,s measures the "worst case" degree of approximation by
generalized translation networks with n neurons under the assumption that
f E Wr,s and is properly normalized.

There are general theorems in approximation theory due to DeVore,
Howard and Micchelli [6] which indicate that E;n,,, must be at least of the
order n-,Jr. This order was achieved in [10] using networks with multiple
hidden layers. However, it is shown in [4] that these methods cannot work
for networks with one hidden layer. It was conjectured in [11] that EO;,,rs
cannot be O(n-,Jr) at least in the usual neural network setting, where d = 1
and 0 is a sigmoidal activation function.

The following theorem due to the first author [12] disproves this con-
jecture, and describes certain conditions under which the optimal order of
approximation can be realized, in fact, for generalized translation networks
with a single hidden layer.

THEOREM 2.1. Let I < d < s, r > 1, n > 1 be integers, :Rd - R be
infinitely many times continuously differentiable in some open sphere in Rd.

We further assume that there exists b in this sphere such that

Dk (b) # 0, k E Zd, k> 0. (2.5)

Then there exist d x s matrices {Aj }>=1 and a positive constant c depending
at most on 0, r and s, but independent of n, with the following property. For
any f C Wr,,, there exist coefficients aj(f) such that

n

If - 5 aj(f)O(Aj(.) + b)l1 _< cn-r'llflwr,. (2.6)
j=1

The functionals aj are continuous linear functionals on Wr,,.
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Some of the important examples where (2.5) is satisfied are the following,
d

where for x E -d,, we write IxI := •_•x) 1/2: the squashing function, where
j=1

d 1= , 0(x) := (1 + -x)-', the generalized multiquadrics, where d > 1
and o(x) := (1 + x12)& , (a • Z), thin plate splines, where d > i, and with

q e Z, q > ci/2,

Ix2-d ,log xK, d even,
O(X) = xI 2

d ' d odd,

and the Gaussian function, where d > 1, 6(x) := exp(-Ix1 2).
A remarkable feature of Theorem 2.1 is that the matrices Aj and the

threshold b are determined independent of the target function. The deter-
mination of these quantities is typically a major problem in most network
training algorithms such as backpropagation. In fact, the proof of Theo-
rern 2.1 does not depend upon any optimization at all, so that none of the
usual problems in network training, such as local minima, arise. The proof
also gives an explicit formula for the functionals aj(f), thus reducing the
"training" to a simple evaluation of linear functionals.

For functions which are analytic in a (complex) ellipsoid containing
[0, i1', the method of the proof gives dimension independent bounds, allowing
a geometric rate of approximation. The analyticity condition is substantially
stronger than the more well known conditions of Barron [1], but the geomet-
ric rate of convergence is also substantially stronger than that obtained in
[1]. Moreover, it is a local condition.

Dimension independent bounds under a different set of local conditions
are studied in [13]. It is worthwhile to remark in this connection that the

Daper f14] studies the construction of networks which provide an -optimal
recovery" of a class of functions, based on the number of observations on the
target function, rather than the number of neurons.

3. AN, ALGOROTPT-T.. FOR ADAPTIVE APPROXIMATION

The networks described in the proofs of the results in Section 2 require that
on( should be able to sample the target function at prescribed points, with-
out noise. In this section, we describe an algorithm which does not require
these assumptions. The basic idea is the fact (cf. [10]) that it is possible to
approximate the characteristic function of an s-dimensional cube arbitrarily
closely usiug a neural network with a fixed (dependent only on s) number of
neurons, each evaluating a bounded sigrnoidal activation function, arranged
in nto hidden layers. In this section, we describe an algorithm which will pro-
vide ain adaptive app)roximation to a target function f on [0, 1]' by choosing
a ult•ble partition of the cube.

T'he algorithm in Fig. 1 is a very simple adaptation of some of the ideas
iR. DM ore's lecture [5]. The starting point of the algorithm is the treeming

dci•, aT, which is organized as an array of (s+l)-tuples (x. y) where Yt E [0, 1]'
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and y is the value of the target function f. At the culmination of this
algorithm, the cube [0, 1]' is partitioned into subcubes and the approximation
of the target function is the function g that takes a constant value on each of
these subcubes. The accuracy of this approximation is measured by a suitable
functional E(T) of the training data, such as the root-mean squared error.
During the algorithm, the subcubes are organized in a tree structure. The
root of the tree is [0, 1]', and the children of a node are the 2' partitioning
subcubes of that node obtained by halving each side of the node. For each
node Q, SQ denotes the set of observations (x,1y) such that x E Q; YQ is the
value of g on Q.

1. Let " := {[0,1]}, S {(xtyi)}.
2. Q := [0, 1]3, YQ := y, E(S) := 0.
3. while there is more training data, do begin
4. while ((E(S) < c) and (ISQ1 _< P)) do begin
5. Read next (x, y) and add it to the set S.
6. Find the smallest subcube Q E A" such that x c Q.
7. Set ZQ := (FSQI1Q + Y)/(ISQI + 1).
8. Calculate E(S) using g(x) := zQ for x E Q.
9. end {Straightforward processing, go to line 4.}
10. while ((E(S) > c) or (ISQI < P)) do begin
11. Split Q into 2' equal subcubes.
12. For each subcube C of Q do
13. If Sc is empty, set Pc := yQ.
14. Otherwise, recalculate Pc.
15. Add C to II.
16. end {subcube processing}
17. Rename the subcube containing x as Q.
18. Calculate E(S).
19. end {Bringing the error within margin, go to 10}.
20.end { Outer while, go to 3 for more data}

Fig. 1.
Partitioning algorithm

To start with, the tree consists of the root alone. Given any tree, we keep
on accumulating the data such that the x values fall on a leaf of this tree.
The value of g on each leaf is simply the average of the y values corresponding
to the x values falling on that leaf. This process continues until the error
functional for the partition becomes unacceptably large, or until a single node
accumulates too many x values; thus indicating that a more refined analysis
is required. At this point, the node is split into its children and the data is
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redistributed. If there are-no x values on any of the new leaves, the value of
y on these leaves is the same as that on their parent, before the parent was
split. This splitting continues until the error functional for the training data
encountered so far is satisfactory. The process stops when the training data
is finished and the error functional E(T) is satisfactory.

If the target function is continuous, then this process is guaranteed to
stop after a sufficient amount of training data is analyzed. Thus, the algo-
rithm provides universal approximalhoa. It can be easily modified to incorpo-
rate spline functions of order higher than 0. This is expected to significantly
enhance the performance of the algorithm, albeit at some computational cost.

There are many algorithms in the literature for adaptive approximation,
which are perhaps better than our algorithm in many ways. The main inter-
esting feature of our algorithm, in addition to its simplicity, is that it does
not seek to solve any ianimization problem. For example, at each stage of
the recursive partitioning algorithm, (CART for regression) [7, p. 11], [9, p.
231], the domain and the sampling data are split so as to minimize a vari-
ance. In the MARS algorithm, [7, p. 17], the nodes and the coefficients of
the approximating spline are chosen at each stage to minimize a "lack-of-fit"
functional. In the k-NN algorithm, one has to search in the sample space to
find the k argument values which are closest, i.e., minimize a distance func-
tional, to the given argument value. Our algorithm does not require any such
minimization. The resulting error is therefore not optimal, but is still under
control. In fact, the algorithm guarantees that the error does not exceed a
preset tolerance. We have not done any pruning as suggested in [2, 7]. The
numnber of subcubes, and hence the number of neurons is typically substan-
tially large. In the case of the algorithm of Fig. 1, pruning could have been
accomplished easily. One Just combines all the neighboring subcubes having
the same predicted value into one subregion. However, since our algorithm
is so simple, and the combined subcubes might not give a cube, it was not
thought worthwhile to prune the tree. Finally, we observe that the resulting
neural network provides localized approximation in the sense of [4].

Although our main interest was only to check how the ideas of [10] can
be implemented in practice, rather than to solve any particular problem,
we tried the algorithm to solve two time series prediction problems. The
Mackey-Glass time series, studied recently by Plutowski, et. al. [17] and
Platt [16], is a four variable problem. We set the training RNIS at 0.001,
trained on 400 samples and predicted the next 100 samples. The net RMS
error (on the test data) was 0.0026 (Fig. 2). This required 279 cubes at the
end of the training. The test phase required an addition of 40 cubes, which
was done very easily. When we trained on 500 examples, and predicted the
next 500 data, the net RMS (on the test data) was 0.0022 (Fig. 3). At the
end of the training, there were 300 subcubes, the test phase required 131 new
subcubes. We also analyzed the flour data studied recently by Chakraborty
et. al. [3]. As in [3], we trained on 90 samples and predicted the next 10.
The training RMS was preset at 0.25. In separate modelling (a two variable
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problem), we obtained an RMS of 0.0028, 0.0028 and 0.0014 for the three

cities (Fig. 4 shows the graph for Buffalo). In combined modelling (a six

variable problem), the numbers were respectively 0.0043, 0.0038 and 0.0040.

This is a substantial improvement on the results quoted in [3]; indicating
that the target function must be very smooth.
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FIGURE 3. Mackey-Glass Series; - predicted, ... actual
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The basic object of interest in neural network modeling is the conditional
input-output distribution p(ylx), i.e., the probability distribution of the out-
put conditioned on a test input vector, see e.g., [16]. Normally the network is
trained to implement the conditional mean2 , E{ylx} = fy .p(ylx) dy. The
first source of uncertainty is the inherent prediction error c = y - E{ylx}
which - per definition - cannot be modeled. Another considerable source of
uncertainty is the estimation of E{ylx} from a limited number of training
data.

This paper deals with empirical assessment of model quality expressed in
terms of generalization performance defined as prediction accuracy on future
data. Reliable estimates of the generalization performance of a particular
model is very important for practical applications. Moreover, in order to
choose the best model from a pool of candidate model architectures3, one
requires a test which determines if a particular model has a significantly
higher generalization performance than a competing model. The empirical
framework enables both absolute and comparative generalization assessment.

The generalization performance can be decomposed into three compo-
nents, see e.g., [3], [6]. The first term is due to the inherent prediction error,
E. The second term expresses the insufficiency of the neural architecture 4

to model the conditional mean, and is often referred to as the model bias.
Finally, the third term reflects finite training set effects, also known as the
model variance. While the first term - per definition - cannot be decreased,
there will normally exist a trade off between bias and variance which is ac-
complished by optimizing the architecture, e.g., by using pruning techniques.

ON GENERALIZATION PERFORMANCE

Suppose the network is trained by minimizing a cost function, viz. the sum
of a loss function, SN(w), and a regularization term R(w), i.e.,

IN

CN(W) = SN(w) + R(w) = N Z e (y(k), g(k); w) + R(w) (1)
k=1

where t(.) measures the distance between the output y(k) and the network
prediction j(k) = f (x(k); w). Even though much of the material in this paper
applies for general loss functions, often the mean square error loss function,
f = (y - e2 is considered. N defines the number of training examples,N

i.e., input-output pairs of the training set: D (xP(k), y=(k))}k=1
Training on the full set of examples provides the estimated weight vector

iv = arg minv CN(w). The generalization error, G, is defined as the expected
2This is optimal when using a mean square error cost function, see e.g., [163.3E.g., feed-forward neural nets with different input lag-space and number of hidden

units.4The architecture is presumed to be finite, i.e., the weight vector is finite dimensional.
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loss of the estimated model oil a test sample (X, y) independent of those in
the training set,

G (o) = E ((y, ý'; = (p ý; i) p(x, y) dX c/ (2)

where E{.} denotes expectation w.r.t. the unknown joint input-output proba-
bility density p(e :y). G(•) depends on the actual training set D through the
estimated weights iv and has the lower bound Gi,, - G(w*). w* denotes the
optimal weight vector w' = arg min. E{Cv(w)} = arg min. [G(w) + R(w)]
which corresponds to training on an infinite training set. Under fairly mild
assumptions, it is possible to show limrv-+ , i = w*, see e.g., [10], [11],
171-. GnI)i expresses the fundamental uncertainty of y when xc is known, and

furthermore the potential lack of modeling capability, i.e., the network is inca-
pable of implementing the optimal5 function, ,q(X) " arg rminQ(,) E{f(y, p5(x))},
0('() : 1'L •+ R. Insufficient modeling capability is due to two facts:

" In general, when using a finite architecture the model is incomplete, i.e.,
f (* w')) #4 .(x) where w° = arg inii, G(w) is the weights minimizing
the expected loss using the architecture embodied by f(.).

" Regularization implies that the optimal weight vector w* does not equal
w': even when using a complete model.

Since the A' samples in 9 are randomly selected from the joint density
1)((xr(]-), y(l)). .. , (x(N), y(N))) the generalization error G(Bt) is stochastic
vwith a certain Qeneralization e1rcor probability distr'ibutio',
P(G) = Probh{G(i) < C)} and associated density p(G).

The object of interest for model design could be either the frill general-
ization distribution or just the generalization error G(Qf) on the particular
training set available. These cases are treated separately in the following.
If one has a strong belief in the trainig set (e.g., if it is large) one might

atddlress G(ý'v). Otherwise, it might be better to consider the training set as a
typical set drawn randomly from the joint input-output distribution in order
to reveal the generic characteristics of the employed model.

Since p(G) depends on the true distribution of data, the iiodel architec-
ture, and the number of training data, it is impossible to fully characterize it.
However, it is possible to give some general properties. Obviouslv, p(G) = 0
as G < G,,,,. For finite training sets, p(G) will have non-zero values for
G > Gmt, and since liny ,iý = w*, p(G) tends to a Dirac delta function
t)(G - G.i,,) for N --s cc. If the model is complete, the loss function is the
mean square error and no regularization is employed, it is possible to show6

asvmnitoticallv as N -- c-., G(Q) _ (72(1 + X2 (p)/N) where o72 is the predic-
tion errot noise variance and 2V(p) is the V2-distrihutioni with p =- dim(zu)
degrees of freedom.

`V t'h o respect to the employed loss function.
T;,z, is done bY using second order exp)ansions of G(w) around w*, and the fact that

that th' fluctuations ,w - w- are asymptotically Gaussian distributed. See e.g., [GI,

i[ d [16]3
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The literature on generalization theory and estimation of generalization
error does not in general address the problem of characterizing the full pre-
diction risk probability density. Most work has focused on simple measures
of location such as the average generalization error

avr(G) = E-D {G(iý)} = J G . p(G) dG. (3)

This includes algebraic estimators like FPE [1], FPER [7], GEN [5], GPE
[9] and NIC [10] which are valid asymptotically N -* oo and make several
assumptions on the model and statistics of the data. However, also algebraic
estimates of fractiles of p(G) have been developed, see e.g., [14], [15]. Thus
the 1 - ca fractile G 1l, defined by Prob{G < Gp-,} = 1 - a guarantees
that the probability of G exceeding G 1 ,- is a, which can be set to some low

percentage.

EMPIRICAL GENERALIZATION ERROR ESTIMATION

If the object of interest is the generalization error G(Q-) for the particular
training set available, we consider the hold-out cross-validation technique [13]
for estimating G(Q). Suppose that a cross-validation set C of N, = [NT] 7

0 < -y < 1, samples are hold out for cross-validation and denote by T the
remaining Nt = N - N, data for training, i.e., let iv = argmin,, CN, (w).
The cross-validation estimate of G(iS) then reads:

1 G~ff) = ~c •• gy~k)•(h)•v)(4)

Under suitable regularity conditions, G(iS) --* G(iS) as N, -- oo. However, a
very large cross-validation set leaves only few data for training thus increasing
G(ib). Obviously, there exists an optimal fraction -y which trades off the
conflicting aims. Assume that the quality of the cross-validation estimator is
measured by

MSE(-y) = ED G(i } (5)

where ED{.} is the expectation w.r.t. all training data. Further, assume that
the loss is the mean square error and that the training data are independent.
Since Ec{G(iS)} = G(iS) evaluating Eq. (5) gives

MSE(-y) = ET { [Ec {e
4

(i,)} - G
2

(iV)] (6)

Using asymptotic expansions (see e.g., [6],[7]) for the terms in Eq. (6) and
considering the model to be complete, it is possible to show that the the

7 [.] denotes rounding upwards to the nearest integer.
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optimal fraction is given by I-t = 1- V-1/N where 0 4pu1/(1-c), ý is the
kurtosis of the inherent noise (equal to 3 for Gaussian noise), andi p = dim(w).
That is, lim y ?o = 1 while N1 = O( N(3) and N, = O(N - NV)
asymptotically. It should be emphasized that the choice of -' for a finite small
NV still needs to be tuned by hand.

The hold-out cross-validation scheme can also be used for comparing gen-
eralization errors of different models. Consider the scenario of pruning a
nested family of neural net models and suppose that two alternative mod-
els with weights v , i'-, both are estimated from T. If we take w'2 to be
a subset of fvl, i.e., dim(w2) < dim(wj), the hypothesis to be tested is:

G(iV2 ) > G(il). Since the models are nested and estimated from the same
training set, the corresponding generalization errors are highly dependent.
A straight forward procedure which puts error bars on the individual gen-
eralization error estimates may fail to unveil the superiority of one model
relative to another. The dependence is easily taken into account by ana-
lyzing the difference in generalization error, AG = G(i'2 ) - C(ff 1 ). Ac-
cording to the central limit theorem' AG tends to a Gaussian distribu-
tion as N, -- c,. That is a standard t-test for the hypothesis can be
used. If AG/std(AG) < t,(NV• - 1) we reject the hypothesis on an a
significance level. t,(N\% - 1) is the a-fractile of the t-distribution with
.V, - 1 degrees of freedom, and std(.) denotes the standard deviation. Define
AC2 (k') = e2 (k, WQ) - eC (k, ffv1 ) then the standard deviation is estimated via
(std(AG_.k)) 2 = (N\ _ 1)- 1IY- re.c(Ae 2 (k) - Ad)2 .

EMPIRICAL GENERALIZATION ERROR DISTRIBUTIONS

We suggest to estimate the generalization error distribution by using leave-
out cross-validation [12], [13] and resampling techniques. The basic algorithm
is given by:

1. Specify the leave-out fraction y/ and determine N, = fNlY]. Further
specify the number of resamplings J < N!/NJ!(N - N,)!.

2. For j = 1. 2. - , J split the training set randomly into a cross-validation
subset, Cj, and a training set, Tj = 'D \ Cj not used previously'.

3. Train on T7 with Nt = N - Nc examples to obtain the weight estimate
iýj and calculate the empirical mean of the loss on the samples Cj,
which yields the generalization error estimate:

-j = Gj (i5j) = -E Z (y(k), y'(k); ii). (7)
NkEgj

The training in step 3 can be very time consuming and in [4] we developed
an approximate technique for leave-one-out cross-validation.

st hiis also applies when the error signal is a strongly mixing sequence (time-dependent).

'Note that this is resampling without replacement, as opposed to the Bootstrap
technique.
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Ideally, when estimating Eq. (7) we should train and test on independent
sets. Moreover, the training sets should be independent. These properties
only hold approximately. First, it is very important to stress the significance
leaving out a fraction -y compared to the standard approach of leaving out
a fixed number. In the latter case, the different training sets will be too
dependent even in the limit of N -- oc°. However, as discussed in the
previous section by letting 7 -* 1 and if Nt = O(vlog(N)), N, = O(N -

v log(N)), where 1, is a constant, all moments of Gj converges". The number
of resamplings J should also be allowed to increase towards infinity as N
grows. Secondly, for most signal processing problems, time-dependence can
especially for small N cause noise in the estimates. However, asymptotically
this is no problem since we expect the input signal to be a strongly mixing
sequence, i.e., the time-dependence vanishes for large lags.

From the estimates Gj in Eq. (7) it is possible to form the empirical
generalization error distribution

J

Pemp(G) (G - (j) (8)
j=1

where G(1) < 0(2) ... G(j) is the sample order statistics, andp(G-G(j))
1 when G > G(j), and zero otherwise.

Since p(G) ishighly non-Gaussian and long tailed (which is demonstrated
experimentally below), the mean and variance are not sufficient for charac-
terizing the shape of p(G). It may consequently be desirable to consider more
robust location and dispersion measures which we are able to calculate with
Perp(G) in hand. In general the location of p(G) delivers an estimate of
the level of generalization error. The dispersion conveys the fluctuation in
generalization error and might suggest if the current number of examples is
sufficient for learning the task properly. We consider the following quantities:
Location:

"* The average avr(G) = f Gp(G) dG.

" The trimmed average tavr(G) = f " Gp(G) dG which reflects the
average in which the highest and lowest 5% of the data are excluded.

"* The median med(G) equal to the a = 50% fractile G5o%.

Dispersion:

"* The standard deviation std(G) = (f[G - avr(G)]2 dG)1 /2 .
"* The median absolute deviation mad(G) = med( IG - med(G)j).
"* The interquartile range iqr(G) = G75% - G 2 5 %.

iOThis is discussed in the literature of the so-called Jackknife estimators, see e.g., [2],

[11, Ch. 5.7]
1iThis is a generalization of what was stated in the previous section for convergence of

the second order moment in Eq. (5).
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DPe to theo fact that •)(G) follows a X 2 like distribution, we might consider
a scrntio0 of G ill order to make it more well behaved. In the general
±cb, h: of Box-Cox transformations (see e.g., [11, Ch. 2.8]) we foundc that a

snita !)! transl o1mat, 1012 is 6C = log(1 + G).
As il the previous section it is possible to compare the genieralizatiiol

al ilty e.g, b comlparihg estimated average generalization errors for two
a oles descri rwhe1 by a), cc. Define the associated estimates 73C(G)1 =

t C G (gij), J = 1, 2. and the difference AŽ3 (G) -77(C)-h7(Cj).
For i 1IrA,.(C) tends to a Gaussian distribution by the central lhnit
teore1 , staoduard deviation g-iven lI)v

s/,d(AK7>c C6)) \(I-1d [0,2/ -
0 uj - Aa '( - (0)

j jAl

Here the individual differeces are assumed to be independent. A standard
t-test (as described previously) can then he applied.

S TjvXZtf CAL E- AMPLES

Cosidei the following da'.ta generating system: ij(A-) = T(/,)T +±(k). x (k)
follom, 2" f = 10 x late Ganssian distribution -(0 7) with 117 chosen its
a r p defielino symmetric matrix. £(/,!) is time-dependent: each
co-:'onent is P first ordoe AR-process with coefficient 0.6518 scaled to give

ft 1 variance, tLius imoienienting a low-pass filter xith iemory iength ap)rox.
10 71. TIha- oois /) .A"(0, 72) is ii.d. and independent of xr(k). The

-v..di-ts, w° were chosen independently from a A,"(0, 1) distribution.
W 2e Qc-i- C = 30000 independent training sets of size IV = 20 anti

t- e wit a p = 10 diclensional linear model using the mean square er-
rcr cost (withont reglarization) to obtain the estimates 3('), / e [1: Q)].
T'-is enables a highly accurate estimate of the considered generalization per-

f'oalna measures. Asa n example, the "tciue" average generalization er-

z-cc is calculated by a e(G) Q Q G (&i ) xhere C( = -2

C-,.. "v°) -. /w -7v 0 ). For q = 500 of tie (Q = 30000 training sets
-apphied the leave-out proceclure with -y = 0.25, J = 500 to obtain thl

h s-imates 5 to9. and corresponding generalization error estimlates Gj
1: 0ýo comparison we caleulateed the FPE [1] estimate of occ(G) 1w

FPE(•) o W G,(() _ + M)/(N:-7)

Fig. I shaows the obtained generalization error prohal)ility distributions.
Inaie 1 shovs a comparison of the suggested measures of location and clisper-
sion. Ve coinsider the transfornaed variables C which experimentallv showxe
0i t0he performance significantly oxer G. The table indicates that the

proroe leave-out technicue is fairly accurate for estimating the location and

i- i G = 01 for ( =0.
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Probability Distributions, p=10, N=20 True Probability Density, p=10, N=20
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Figure 1: Left panel: True (solid) and empirical generalization error distributions
as a function of G = log(1 + G). The dashed line indicates the median distribution
of q = 500 obtained by leave-out cross-validation while the dotted lines denote the
25% and 75% fractiles. The vertical dashed line is the lower bound log(1 + 0,).
Right panel: True generalization error density p(G) estimated from Q = 30000
replications. The vertical dashed line is the lower bound ca2 = 32.45. The vertical
solid line denotes the average, and the vertical dotted the median. Note that p(G)
is highly non-Gaussian and long-tailed (ranges to G = 1000 approx.). This implies
that the classical measure of location, viz. the average overestimates the typical
(the mode) generalization error.

dispersion measures even though the number of training data is only twice
as large as the number of weights. Definitely, the leave-out method outper-
forms the classical FPE estimate at the expense of increased computational
complexity. However, the framework offers the possibility of estimating other
quantities which are not possible in the asymptotic framework on which FPE
relies.

We considered furthermore the comparison of two competing linear mod-
els: w, with dimension P, = 10, and w 2 with dimension P2 = 9 which conse-
quently is an incomplete model of the true data generating system. The true
difference in average generalization ability Aavr(G) is positive thus indicat-
ing that one should prefer model I over model 2. Using the same simulation
setup as described above the t-test on a specified o = 5% significance level
resulted in that the hypothesis fails to be accepted in approx. 30% of the
cases. More over we considered estimating Prob(G2 > GI) from the empiri-
cal distributions. It turned out that the estimate tend to under estimate the
probability by 20%. Further, it is somewhat more robust than the estimates
of the location measures of the generalization error difference.

14When considering C the FPE estimate becomes: log(1 + oQ) + op/(1 + o0-)N with2 SN(Z)/(N - p).
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tioils 1e'e-tI eu0= 00 replications. Ini median the location measures avG)
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rlmmý' thiir tersimate of e ei-(C) obtained byv FPE. Ndoreot in the fluctuations are
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irPsac"1-ig ThnIe majo ]O' -ng is ohat the framework provides insight, into
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NtOen l ocatrion ani-, dispcersion meastures. Traditionallv. only the average
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Abstract

We describe a principled strategy to sample functions optimally for
function approximation tasks. The strategy works within a Bayesian
framework and uses ideas from optimal experiment design to evaluate
the potential utility of new data points. We consider an application
of this general framework for active learning the weight coefficients
of a Gaussian Radial Basis Function (RBF) network. We also derive
some sufficiency conditions on the learning problem for which there are
analytical solutions to the data sampling procedure.

1 TIntLCoductionI

fi most classical formulations of learning from examples, the data (examples)
are assumed to be randomly drawn and presented to the learner. This is the
case for a variety of situations ranging from network models (Rurnelhart et.
al. [5], Poggio and Girosi [4]), PAC (Valiant [8]) frameworks, and classical
pattern recognition. In this sense, the learner is a passive recipient of informa-
tion about the target function. In contrast, one could consider a learner that
plays a more active role in collecting its examples. By judiciously selecting
examples instead of allowing for possible random sampling, active learning
techniques can conceivably have faster learning rates and better approxima-
tion results than passive learning methods.

Using ideas from Optimal Experiment Design (Fedorov [2]), we have, in
an earlier work (Sting and Niyogi [7]) formulated a general procedure for
sampling an unknown target function at points in its domain. In this paper,
we consider an application of this general framework to encompass the active
learning of the coefficients of a Radial Basis Function (RBF) network (Poggio
and Girosi [4]). More generally, our solution allows us to handle parameter
estimation problems for function classes that are linear in their parameters.
In this paper, our contributions are:

i. The application of an Optimal Experiment Design frarnework for es-
timating the weights of RBF-type function classes, and the analytical
derivation of an optimal sampling strategy for parameter estimation of
such classes from data. This represents a significant improvement over
existing work on toy function classes, like step functions considered in

0-7803-2739-X/95 $4.00 © 1995 IEEE
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(Sung and Niyogi [7]). Recently, Sollich [6] has applied a similar opti-
mal experiment design framework for estimating the weights of a single
perceptron unit. To the best of our knowledge, this analysis has not
been done before on RBF-type networks.

2. Empirical comparisons of the data requirements for active and passive
learning of RBF-type function classes.

3. Development of sufficiency conditions on the learning problem for which
an active data selection sequence can be analytically derived and pre-
computed within our optimal experiment design framework.

We now provide a brief statement of our problem, our solution for the active
sampling strategy, and a glimpse of the empirical simulations.

2 The General Formulation

We adopt a Bayesian formulation for active example selection. Specifically,
we can pose the problem as follows: Let D, = {(xi, yi)Ii = 1, . . ., n•} be a set
of n data points sampled from an unknown target function, gt, possibly in the
presence of noise. Given a class of approximation functions, Y, where each
f E .7 has prior probability P.y(f), one can use regularization techniques to
approximate gt from D, (in a MAP sense) by means of a function 0 E F. We
want a strategy to determine at what input location one should sample the
next data point, (x,+1, yn+i), in order to obtain the "best" possible Bayes
optimal approximation of the unknown target function gt with our concept
class .,

We approach the active example selection problem in two stages:

1. Define the notion of a "best" possible Maximum A-Posteriori
(MAP) approximation for an unknown target function. We
propose an optimality criterion for evaluating how well a solution ap-
proximates an unknown target function. Our active learning goal is
to find a solution g G T that best approximates the unknown target
function in terms of the optimality criterion.

2. Formalize mathematically the task of determining the best
input location to sample next. We express the active learning opti-
mality criterion as a cost function to be minimized. The task of choosing
the next data point becomes one of minimizing the cost function with
respect to the next sample's input location.

Earlier work by Cohn [1] and MacKay [3] have tried using similar opti-
mal experiment design techniques [2] to collect data that maximizes infor-
mation about an unknown target function. Our work differs from theirs in
two respects. First, we use a different, and perhaps more general, optimality
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criterion for evaluating solutions to an unknown target function, based on
a measure of function uncertainty that incorporates both bias and variance
components of the total output generalization error. In contrast, MacKay and
Cohn consider only the variance component in model parameter space. Sec-
ond, we also show that our active example selection strategy requires fewer
training examples than passive methods to learn a target function to a given
degree of accuracy.

2.1 The Formulation

we begin by establishing an optimality criterion for measuring the quality
of an approximation function with respect to an unknown target. Recall
that our active learning goal is to find solutions that best approximate an
unknown target according to our proposed optimality criterion. From the
optimality criterion, we can derive a scheme for measuring a new example's
utility in terms of how well the example steers the learner toward the goal,
and an accompanying computational procedure for selecting the next training
example.

Let gt be a target function that we want to estimate by means of an
approximation function 3 7 .7. If the target function gt were known, then one
popular measure of how well (or badly) j approximates gt is their Integrated
Squared Difference (ISD) over an appropriate region of interest ,X:

6(0, g) = I (gt(x) - j(x))2 dx.

In most function approximation tasks, the target gt is unknown, so we
clearly cannot express the quality of a learning result, j, in terms of gt.
We can, however, compute an expected integrated squared difference (EISD)
between j and its uniknown target, gt, by treating the unknown target gt
as a random variable in the approximation function concept class T. Notice
that the distribution of gt is simply its a-posteriori likelihood given D,•, the
n data points seen so far: i.e. P(gt ID.) oc PF(gt)P(D, Igt). We shall use the
EISD as a criterion for evaluating the quality of an approximation result, 4
for an unknown target function gt:

EISD(j, gt) EtC-6j tI

- J P(gt]j'D)6(ggt)dgt

Let j, be the approximation result given n data points, D,,. Our learning
goal is to minimize EISD(j,, gt) for each new n, and so a reasonable active
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example selection strategy would be to choose the next input location, X,+l,

that minimizes EISD(,+,+i,gt). For a given x,+,, we can predict the new

EISD that results from sampling our next data point there as follows:

Suppose we also know the target output value y,+l at the given x,+l.

Our new data set would then be Dn+i = D, U {(xn+l, Yn+l)}, and the new

EISD between gt and its new estimate j,,+1 is given by Ey[1(j,+i, gIt)IDn+],
where the new estimate, j,+,, can be derived from the new data set, D,,+1
via regularization. In reality, we do not know the actual value of Yn+i, but
we can derive for it the following conditional probability distribution:

P(y,.+ilxrý+l,7V,) = P(Y,•+l Ix,+,, f)P(f Z•,n)df

0( j P(D•, U {(x,+l, yn+l)}If)PgY(f)df.

So, for a given next location to sample, X,+l, we can compute the expected
value of the resulting EISD measure:

14(j,++l Ixn+l, Dn) = Eyo+, [EF[6(g+nl gt)IDi+l U (x.+,, y.+)]Ixn+l, Dn]

= /~+1G P(y,,+, IX,+l,•, D)

E-[6(jn+l, gt)ID. U (Xn 1 , y (2)

Clearly, the optimal location to sample next is the location that minimizes

the above cost function:

x,+, = arg min U(j,+I Ix,+ijP•).

The important questions at this stage are:

1. Can the equations above be analytically solved to yield a specific sam-

pling procedure?

2. Does the sampling procedure allow one to learn the target function with
fewer examples? Does it reduce the sample complexity?

We answer these questions in the context of estimating the weight parameters
of a Radial Basis Function network. In particular, we are able to derive ana-
lytical solutions to the equations above and compare the sample complexities

of active and passive learning.

3 Radial Basis Function Networks

3.1 The Function Class F

We consider a class of d-dimensional Gaussian Radial Basis Functions with K
fixed centers where the ith basis function, gi, has a fixed covariance of Si, and
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C,+, has the same form as C, of Equation 3, and depends on the pre-
vious data sample locations {xj : i = 1,..., n}, the weight priors EZ-,

a, and x,+i. When minimized over x, 2+, we get :if+ as the maxi-
mum utility location where the active learner should next sample the
unknown target function.

2. Is it indeed the case that the active strategy outperforms the passive
one? To investigate this we randomly generated 5000 target RBF func-
tions with 8 fixed, arbitrarily chosen centers. The priors on the weights
a are provided by EIF = 1K. For each target RBF function, we collected
data according to the active strategy as well as the passive (uniformly
random) strategy for varying number of data points. Figure 1 shows
the mean error rate (i.e., the integrated squared difference, Equation 1,
between the actual target function and its MAP estimate, averaged over
the 5000 different target functions) as a function of the number of data
points. Notice that the active strategy has a lower mean error rate than
the passive for the same number of examples and is particularly true
for small number of data. The left graph shows a situation where the
learner has knowledge of the true priors on T. The right graph is for
a case where the learner has the following incorrect prior assumptions:
(a) the true centers of the target RBF's are slightly different from the
values that the learner assumes them to be, and (b) the learner's pri-
ors on the weights (Ej- = 0.9IK) are different from that on the target
class (ET IK). Despite these incorrect prior assumptions, the active
strategy still outperforms the passive case.

4 Sufficiency Conditions for Pre-Computing
a Data Sampling Sequence

It is noteworthy that for learning RBF weights, the new optimal sample
location, Xn+l, does not depend on the yi data values previously observed
but only on the xi values sampled. Thus, if the learner were to collect n data
points, it can pre-compute the exact sequence of n points at which to sample
from the start, even before receiving any data from the target function. This
behavior has been observed by MacKay [3] for an active example selection
strategy that minimizes only a model parameter variance cost function. For
such cost functions, any class of approximation functions that are linear in
their model parameters would exhibit such behavior.

In our framework, we minimize an output uncertainty cost function that
includes both bias and variance terms. The following theorem provides suffi-
ciency conditions on the learning problem for which our active learning for-
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Figure 1: Comnparing the active and passive mean error rates for learn-

Ing an unknown RBF target function with 8 fixed centers. Top: The
learner uses the same priors on model parameters as the process that ran-
domly generates the unknown target functions. Bottom: The learner uses
slightly different weight priors and has centers that are slightly displaced
from the true centers.

miulation leads to a data selection strategy that does not depend on previously
ohserved y: data values.

T 'eo're= I Suppose F is a class of real-vahled funetions paraineterized by

ad f . On1 the basis of a data set 'D, ={(xi, 7i i= 1, . .. , n), let the MAP
so lao7d to the learning problem be given by a argminacxk P(g(aP,-)).
Th2e> th e following three conditions guarantee that thte ch oice of tq+q will be
iizdepe adent of th2e previously observed Yi 's in T),.

1. P(g(a)nD,-) can be expressed as Q(a-d(,,)). {xi : i = 1 ... o)) where
Q is soene arbitrary function that does not depend on the data, D,,.
In other words, the yi ternis of D, do not appear anywhere else in
P(g (a)ID,,) Q ((a, - (1), {x: i = .... aI) other than in a.
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2. . is linear in its parameters a, i.e.: ga,+a 2 (X)= ga(X) + ga2 (X).

3. The prior distribution on model parameters a has support R'.

5 Remarks and Conclusions

We have extended a previously developed Bayesian framework for active
learning to the case of learning the weights of an RBF network. We de-
rive a specific sampling strategy, and show how this strategy allows us to
learn with fewer examples (alternatively, make smaller error with the same
number of examples) than random (passive) sampling. This is an application
of the optimal experiment design paradigm to function approximation and
seems to bear promise for the design of more efficient learning algorithms.

References

[1] D. Cohn. A Local Approach to Optimal Queries. In D. Touretzky, edi-
tor, Proc. of 1990 Connectionist Summer School, San Mateo, CA, 1991.
Morgan Kaufmann Publishers.

[2] V. Fedorov. Theory of Optimal Experiments, page 35. Academic Press,
New York, 1972.

[3] D. MacKay. Bayesian Methods for Adaptive Models. PhD thesis, Califor-
nia Institute of Technology, Pasadena, CA, 1992.

[4] T. Poggio and F. Girosi. A Theory of Networks for Approximation and
Learning. Technical Report AIM-1 140, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, 1989.

[5] D. Rumelhart and J. McClelland. Parallel Distributed Processing, vol-
ume 1. MIT Press, Cambridge, Massachusetts, 1986.

[6] P. Sollich. Query Construction, Entropy, Generalization in Neural Net-
work Models. Physical Review E, 49:4637-4651, 1994.

[7] K. Sung and P. Niyogi. Active Learning for Function Approximation. In
Advances in Neural Information Processings Systems 7, San Mateo, CA,
1995. Morgan Kaufman.

[8] L.G. Valiant. A theory of learnable. Proc. of the 1984 STOC, pages
436-445, 1984.

47



A Noved Approac to Pattern
Recognitaon. Basedi onh

IDiscrimrnmative Metrai Desi gn

Ilideyziki TVAT/44AXABE , Tsuyo~shi1 AMAIIGUCHI,
and 5higr ru NýATA GIRI

AIR Interpret ing Telecommu nications Research Laboratories
2-2 Hikaridai, Seihka-cho., Soraku-gun, Kyoto 619-02, Japan

Tel.: +81-774-95-1383
Fax.: +81-7741-95-130S

E-mail: ivatanabe &itl.atr.co.jp

Abstract

This paper proposes a novel approach, named Discriminatire
Mectric Design (DM~D), to pattern recognition. DMD optimnizes
the whole metrics of diserimiinant functions with the Mlinimum
Classification Erro r/ Generalized Probabilistic Descent method
(_MCE/GPD ') such that the intrinsic features of each pattern class
can be rep-ýeseuted efliciently. The resultinig mietrics lead accord-
ingly to rohust reccogniiiers. DMID is quite general1. Several ex-
isting methodls, suech as Learning Vector Quantization, Subspace
)Method, Discriminative Feature Extraction, Radial-Basis Func-
nion Network, and tile Continuous Hidden Markor Model, are do-
uinEd as its sor)cial cases. Among tile many possibilities. tins paper
specifically elaborates tile DMID formulation for recognizing fixed-
dimensional patterns uising qjuadratic dhiscriminant functions, and
clearly demnonstratrs its utility in a speak-er-independlent Japanese
vowel recognition task.

Qv.er-learning- is a lotng-st andling problem in the statistical approach to
patterni recognizer rdesign. Because recogtiizers ace tnevitahly trained us-

i onlv fi-nit 'stres pcally finite design samples, recognition accu-
rcy". over the finite design sample set, is not necessarily equivalent to that
over unknownv samples. Acttually, a recognizer achieving high accuracy
over design data sometimes dlegrades in performiance over tutknownu data.
1e3s is the so-called over-learniug phenomenon, anrd generally exists in
sta tistical est imation tasks.
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Pattern recognition usually consists of front-end feature extraction
and back-end classification. In most cases, high recognition accuracies
have been achieved by increasing the number of classifier parameters.
For example, by using Learning Vector Quantization (LVQ), one can
easily achieve a highly-performing distance classifier. This discrimina-
tive design method that enables one to handle multiple prototypes per
class achieves more accurate classification over design data by using more
prototypes, i.e., trainable classifier parameters. However, such high per-
formance over design data does not necessarily guarantee high accuracy
over unknown data (See the later section.). Obviously, here we are faced
with the over-learning problem.

A fundamental solution to the above problem has been to increase
the statistical stability of estimation by reducing the number of classifier
parameters, or degrees of freedom of the model, relative to the number
of available design samples. However, as still vigorously discussed in
Artificial Neural Networks studies, satisfactory solutions to this problem
have not obtained yet. Our purpose in this paper is therefore to develop
a method of alleviating the over-learning through re-consideration about
the other important factor of the recognition process: feature extraction.

It is naturally desirable that the feature extraction should appro-
priately interact with the classification: This interaction enables one to
discover features useful for the classification. However, in practice, no
recognizers yet include such interaction. Incorporating the interaction in
the recognizer design would lead to features peculiar to each class, make
easier the classification, reduce classifier parameters, and accordingly al-
leviate the over-learning phenomenon. In this light, we propose in this
paper a new method, called Discriminative Metric Design (DMD), of
achieving discriminant function metrics for minimizing recognition er-
rors, in other words, misclassifications.

DMD is a general method based on the Minimum Classification Er-
ror/Generalized Probabilistic Descent method (MCE/GPD), and can
be applied to various types of recognizers as well as a wide range of
recognition tasks. By way of example, we focus in the paper on DMD
implementation for a recognizer using the fundamental quadractic dis-
criminant function to recognize static (fixed-dimensional) patterns, and
on its evaluation in a speaker-independent Japanese five-vowel recogni-
tion task.

The relation has been clarified between MCE/GPD and LVQ [4].
The development of DMD greatly widens the scope of such relationship
analysis. In the paper, we specially clarify the relationships between
DMD and important design algorithms, i.e., LVQ, Subspace Method
(SM) [6], and Discriminative Feature Extraction (DFE) [1]. We also
describe that DMD is related to a segmental GPD-trained continuous
Gaussian HMM recognizer [5] and an MCE/GPD-trained kernel function
recognizer [3].

49



2 Discr niinative Metric Design (DMD)

2.1 Statistical Pattern Recognition

We consider the problem of classifying an input pattern x e X, where
is the pattern space, into one of the K classes {C,}K1 . x may be

either static or dynamic (variable-dimensional). Our decision rule is as
follows:

C(2): C(x) =Ci if i =argming,(x), (1)

where C(x) is the recognition operation and 9,(x) is the discriminant
function that indicates the degree to which x belongs to C,. The ul-
timate goal here is to achieve discriminant functions that can minimize
the recognition error probability. In reality, however, despite many ap-
proaches, achieving this goal has been rather difficult due to the limited
amount of available resources such as design samples.

2.2 General Formulations of TDMD
In most cases, the discriminant function is simply based on heuristics and
on some kind of scientific knowledge indirectly related to error minimiza-
tion. Howeever, such functions are never guaranteed to lead to a robust
recognition. One way to remedy this inadequacy is to design each dis-
criminant function so as to represent the salient, intrinsic features of its
corresponding class efficiently.

-j - f s'-s ) S

Feature Transformation Operator Class iNlembership Measure on
to Each Ciass-Feaiure Spice Each Class-Feature Space

Figure 1: Pattern Recognizer Based on DMD

Our solution, DMD, is illustrated in Figure 1. Each discriminant
function g, (x) (s = 1,2, ..., K) involves a class-fealurc Ira.sfor'maiol
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operator T, defined as a mapping from the original pattern space X
to the s-th class feature space Y, and a class-membership measure f,
defined on Y,. Hereafter we call the set {fT, f, } the metric. DMD opti-
mizes each metric with MCE/GPD [2] so as to minimize the recognition
error probability. This design can consequently increase the design ro-
bustness: Each class membership is evaluated in its corresponding class-
feature space where features relevant to recognition are emphasized and
information irrelevant to recognition is suppressed.

Note that x is not restricted to a feature vector but may be a pattern
before feature extraction process; the latter case implies that Z1 execute
the individual feature extraction in each class.

3 An Exemplar Implementation of DMD

This paper specially elaborates the above formulation for the case of
recognizing d-dimensional static patterns using a linear transformation
T, and a Euclidean distance-based measure f, (s = 1, 2, ... , K):

y, = W()= W x, X,(2)

S(X) - r, (r112, (3)

therefore
gs(X) (= - ,')T WTW W (X _ r•), (4)

where the superscript T denotes the matrix transpose, each W, has a
size of d x d and r, denotes the reference vector of C,. Consequently,
each discriminant function comes to quadratic-form function. The DMD
(GPD) training is applied to {W 8 }•=I and { 8 }r=-1. The updating rule
for these parameters can be derived using the chain rule of differentiation
and given as follows: for a sample xt which is selected randomly at the
updating step t from labeled design samples and belongs to Ck,

r(') = r~t-1)- týtt(xt;A(t-l))pk,s(xt;A(t-1))Vrsgs(8 t;A(t-1)),

(5)
WOt) : W(t-i) - ,t4(xt; A(t-1))pk,,(xt ;A(t-l))V7wg8 (xt;a(t-')),

(6)

where

Vrgs(xt; A(`-1)) = - ... (t-1)TW4 (t-j1)(xt - 1) (7)

Vw ~gs(xt; A('-')) = 2WVtl)(xt - r(-l))(xt _ r(t-1))T (8)

the suffix t denotes its corresponding parameter status at t (t = 1, 2, ... ,
Arepresents K (> 0) is the learning coefficient

satisfying t= -t 0 and 00 < 1, (x; A) (> 0) denotes the
derivative (with respect to the misclassification measure) of the smooth
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LI. 0, n (se [2]) andc pp.0 (x< YI) denotes the dlrvtve (Ithrscr
ow 1 10 otfunction) of the misclassification measure (see

2-s -iS-po p > 0 and p,'.,j < 0 (j =A '). Properties of the updating
c o:i,,,e 1 cs Fr d i-, ssedl in [2]

Ot( i' LOISenemipar BUMD implemnent airon Canl be elucidated
de, C2 deop ositilonl (S vP) of -7'Y, whichl I given as

-T

-!ru7 and 7, are the orthlonormal miatrices of size d x el, andQ
i I a'h -7 didagonal m-at mx whose diagonal elements {•2 j}$ý called

iM1-ula1! vailues, are non-negative. The ahove equiation says t iiat it1r
v=,-l the 'ipnpt vector into each corltnmn vector of Vf, weiln-ls each

c on IWitl and~ e assigns each to its cortesporiting- hase vector

o *ý, l~e. the coiun> vector of -T~Note that LT, is indepe ndent of the
* oi cl-~no inl till case, u t the Ltrclidearl distance imieasture f,. It

CFý] be eeti 'iat th I projected comiponients w,,ith larger siingtular valtues,

Icontrihute'mr to the class-mel cership ev alnation. correspond

1C, nla- roellvanL illfrmrnat ion ior recognit jol decision. DIDD finds the
-i-pacaloiel 'r set 2,andI the orthionormal hase V , which are

on1 I I:-, P1f r -cogii,'on de11cisioll.

C 'alilau DM73. v.-( condurcted1 a five-class, fiat c-dii ensional Japanese
OL"- -pitl- to cog litlil expe rin-ient in a speaker intlepen lent mode.

e oh-c 1 5owee, c.,ýrat eel fr-om- 520 Isolated words spoken byx 70 speak-
e C~ (:, m 111 and3-1 ccl nales). and d lgitizedl at a samipling ratc of 12 kill.

1ý ee fragl 'nt of eacil vowel se'gment was selected using a, 20 Ins

VVIuclew, a'id conlverted into a ft cogorszer inoput pattern con-

<Itlu' of, 10 IPC ceptral coefficients w,,ithout, the 0-th cocfficient. N'ote

p1111 atemn sample, was a1 static cepstral vector.

Hýý 0 >01nstrat' Ithe recognition performance of the DIND-trained
For car >lnl executitlOl, we coniputeel aia mayes and sla72deed

0>'ccof recogi- 0 ion errior rates with five trials as follow>-;

I> 0 - 1 to 5 (thi 11-til trial){

Sele ct 50 speLakers tanelomnl for a it ollls 912 (ahouit 7500
sarioiles) from tlie xvhole set j", of 70 speakers:

L e' he the- remainiing set, of 20 speakers:

Fo.7 1 to5{

Select 10 speakers randomnly for calrdaloien sel Y2?" 0

(ahorlt 1500 saniples) from (2('2

Let .f2 7 ' he the remaining design2 set of 10 speakers
(ahont 1,500 samples);
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Train the recognizer A(',') using d(nm)

Compute the error rate Pe(v") of A(',') for the validation
set d2(n•m);

Select the best recognizer A(n',m*) where Pev ) = minm v

Compute the error rate d and p(.. of A(nm*) for the design

set Q("'*) and the unknown set d?(n), respectively;

Compute the averages and standard deviations of the error rates with

the five trials ed = (1/5) 1n=, pd) and

,Ded == V(15) Y:n=1 Pe(d) - ed for the design set, and

P - (1/5) E= P,. and SDeU = {(1/5) E pI )2

unknown set.

For comparison purposes, we used four types of recognizers: 1) quadratic
discriminant-based DMD recognizers, 2) a Euclidean distance recognizer,
3) a Mahalanobis distance recognizer, and 4) multi-template (reference)
LVQ recognizers. Each LVQ system used the Euclidean distance for
its discriminant function. Note that LVQ system was trained using
MCE/GPD [4]. All of the parameters in the DMD-based recognizer were
initialized using the Euclidean distance or the Mahalanobis distance.
In both initialization schemes, each reference vector r, was the sample
mean vector of C,. As for the initial value of each transformation ma-
trix W 8 , W(O) was the identity matrix in the Euclidean distance-based
initialization; in the Mahalanobis distance-based initialization,

) = F, ET (10)

Fi 1 1 1 1 , (

Es = [ es,d es,d-1 ... e ,2 e, ], (12)

where y,i and e,,i represent the i-th eigenvalue and its corresponding
eigenvector of the sample covariance matrix of C•, respectively.

Table 1 summarizes the averages of recognition error rates for these
three systems. For reference, the standard deviations of error rates are
also shown in Table 2. The DMD-based recognizer initialized by the
Euclidean distance achieved the highest recognition performance for un-
known patterns. Moreover, interestingly, the DMD-based system per-
formed much better over the unknown sets than did the LVQ system
with several templates, while the LVQ system performed best over the
design set. This result demonstrates that DMD contributes toward in-
creasing the robustness through a suitable design of the class-feature
space rather than an assignment of many templates in each class.
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Table 1: Averages of recognition error rates
__________________________design set unknown set,

DMID (init:Euclid) [2.86% 7.60%
DAID (init:M~ahalanobis) 3. 2 7% 8.09%

Euclidean distance 13. 54 1/' 13.37-%c
Malialanobis distance 4.41% 8. 63%'

LV Q (1 t~emplate) 5.47%/ 8.05%
LVQ (8 templates) 1.613% _________

LVQ (16 templates) f0.726% 10.74%

Table 2: Standard deviations of recognition error rates
___________________design set unknown set

DIND (init:Euiclid) 0.766% 0.679%
DAID (init:MNahialanobis) 1.049% 0.353%

Euclidean distance 1.909% 0.741%
Mahialanobis distance 1.106% 0.775%

LVQ (1 templat~e) 1.352% 0.250%
LVQ (8 templates) 0. 63 4%W 0.702%

LVQ (16 templates) i0.289% 0. 58 6%

2
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Next we show how the values of weighting parameters {p,i} (i.e. the
singular values of W,) were changed by the DMD. Figure 2 illustrates
the initial values and the values after the DMD training for the vowel
class /a/. The results were almost the same for the other vowel classes.
In the graph, the horizontal axis denotes the dimension index i and the
vertical axis stands for the weighting parameter value at each dimension.
Here the metrics of all discriminant functions were initialized by the
Euclidean distance.

This figure shows that DMD yields the large weighting values and the
small ones (and their corresponding rotated feature axes) after training.
DMD suggests that the axes with large weight values are related to the
relevant features for recognition decision whereas those with small weight
values correspond to the irrelevant features.

5 Relationships Between DMD and Other
Techniques

The DMD implementation for the quadratic discriminant function has
important implications for other recognizer design techniques.

Performing the well-known Principal Component Analysis (PCA) in
each class can be a simple solution for finding each metric. In PCA,
the eigenvectors associated with the large eigenvalues of the sample co-
variance matrix represent the intra-class statistical variation factors. To
reduce the influence of such variation factors on recognition decisions,
in other words, to normalize this type of variation, each weighting pa-
rameter ,,i is usually set to the value of the parameter that is inversely
proportional to the i-th eigenvalue; This leads to a commonly-used Ma-
halanobis distance classifier whose metric is specified as (10)-(12). This
PCA-based design, however, estimates the parameters of each class in-
dependently and does not consider the influence of different classes; this
does not necessarily reduce the recognition errors. This insufficiency has
been demonstrated in the experimental results above.

Recently, demonstrations have been made of continuous Gaussian
HMM speech recognizers based on MCE/GPD [5], which have achieved
highly accurate recognition results. In most of these applications, diag-
onal covariance matrices were used: the original GPD adjustment rule
was applicable only to this type of simple form matrix. In contrast, the
DMD adjustment rule enables the full adaptation of full covariance ma-
trices; this will improve the recognition performance compared to usual
mixture Gaussian HMMs with diagonal matrices which essentially cor-
respond to multi-template classifiers using a limited, simplified distance
measure.

It is obvious that the continuous HMM recognizer is a general ver-
sion of the RBF recognizer and the Likelihood Network recognizer [3].
Therefore, DMD also enables the full adjustment of these types of Neural
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Network-based systems.
The feature transformation considered in this paper can be viewed

as a feature extraction process. This point reminds us of the close rela-
tion between DMD and the DFE that jointly optimizes both the feature
extraction and classification processes for the purpose of minimumn error
[1]. It is actually obvious that Di)E can be considered to be a special case
of DMD. The difference between these two is that DFE uses a common

feature space over all of the classes while DMD designs an individual
feature space for each class.

DMD is also related to the Subspace Method in the sense that each
class possesses its own feature space [6]. Indeed, the subspace method
can also be formalized as a special implementation of DMD. For ex-
ample. the CLAFIC method [6], which designs each class subspace by
Karhunen-Lo~ve expansion, can be expressed through the linear class-
feature transformation operator Z and the Euclidean distance-based
membership measure f (. = 1, 2, ... , K) as

YS 'P, VX, (13)

Sdiag( 11...1 0...0), (14)

d-p, elements
7"'Sa • - ' t7,d -"s/ - --' 0.2"'s1 (15)

f, - IY, 112  (16)

where p), denotes the dimensionality of the s-th class subspace and each
v,. stands for the eigenvector of the sample correlation (not covariance)
matrix ,Q,:

si Asi1
'j (i 1, 2 ... 4)(17)

(A,11 > A,> ... _A (18)

and each class-reference vector ?,. is set to zero. Furthermore, the Learn-
ing Subspace Method (LSM) proposed by Kohonen [6], which improves
the discrimination power of CLAFIC by learning, can also be viewed as
a restricted form of DMD in the sense that only V, is adjusted while C =
and r', are fixed. Thus. oUr DMD comprehends the subspace method
and accordingly provides more flexible ways to design robust discrimi-
nant functions for accurate recognition since not only subspaces V, but,
also weiobting parameters r5 (contributions to their corresponding fea-
ture axes) and class templates T, can be adjusted for the minimunM-error
purpose. Moreover, DAID has the potential to discover the dimensional-
ity of each class that is essential for recognition through the adjustmenti
of the weight ing parameters {Psi}>i while LSM determines each di-
Mensionaaitv at the initialization phase and fixes it during the learning

phase.
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6 Conclusion

This paper proposed a novel approach to pattern recognition, named
Discriminative Metric Design (DMD), which fully designs the metric of
each class discriminant function in a manner consistent with recognition
error minimization. The experimental results in a vowel recognition task
clearly demonstrated its high utility. Moreover, a comparison study of
the relationships between DMD and several other recognition methods
provided quite a useful basis for future theoretical analysis and a clear
perspective on feature representation. It is lastly worth noting that one
can easily apply the DMD formulation presented in this paper to dynamic
(variable-durational) patterns by using a state transition structure like
an HMM.
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Abstract

A global optimization technique is introduced for statistical
classifier design to minimize the probability of classification error.
The metthod, which is based on ideas from information theory and
analogies to statistical physics, is inherently probabilistic. During
the design phase, data are assigned to classes in probabilily, with
the probability distributions chosen to maximize entropy subject
to a constraint on the expected classification error. This entropy
mnaximization problem is seen to be equivalent to a free energy
minimization, motivating a deterministic annealing approach to
iniiiniize the misclassification cost. Our method is applicable to
a variety of classifier structures, including nearest, prototype, ra-
dial basis function, and multilayer perceptron-based classifiers.
On standard benchmark examples, the method applied to near-
est, prototype classifier design achieves performance improvements
over botli the learning vector quantizer, as well as over multilayer
pcrceptron classifiers designed by the standard back-propagation
algorithm. Remarkably substantial performance gains over learn-
ing vector quantization are achieved for complicated mixture ex-
ainples where there is significant class overlap.
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1 Introduction

In recent years, the tremendous growth in neural networks research has stim-
ulated renewed interest in statistical classification. Structures such as the

multilayer perceptron (MLP) have the capability of implementing complex
decision boundaries, and have been demonstrated to perform well in com-
parison with conventional classifiers, both for engineering applications such
as speech recognition [8], as well as in the context of scientific inquiry [14].

However, several researchers have observed that MLPs and other structures
trained to minimize the distance to output classification levels ({0, 1} for
the two-class case) do not directly minimize the classification error rate. In-
stead, these networks approximate the Bayes-optimal discriminant function,
or equivalently the a posieriori probabilities that observations belong to a

given class, e.g. [13]. (Similar observations have been made for linear classi-
fiers [2]). Clearly, very large networks may be able, in principle, to accurately

implement the Bayes rule, and thus provide minimum classification error.
However, practical classifiers have restricted size to avoid high complexity

and overfitting of limited training data. Thus, in practice, approximating the
optimal discriminant function may result in significantly greater classification

error than alternative solutions.

Rather than choosing to approximate the discriminant function, a num-

ber of researchers have proposed alternative cost objectives and learning al-
gorithms which better match the goal of minimizing misclassification error

(or minizing risk, if errors are not weighed equally), e.g. [7],[4],[6],[11]. Typ-

ically, these methods descend on an energy surface, using either a batch or
a sequential optimization technique. While these approaches optimize MLPs
and other network models to effectively minimize classification error, a legit-
imate concern is the potential to fall into poor local minimum traps, which
often riddle the energy surface. In fact, the problem of local optima in neural
networks has been acknowledged in a number of papers, e.g. [14]. While
some smart heuristics have been employed for initializing parameters, typi-
cally one is forced to generate solutions based on a large number of random
initializations, and then choose the best result.

We propose a new deterministic learning algorithm for statistical classi-
fier design with a demonstrated potential for avoiding local optima of the
cost. Several deterministic, annealing-based techniques have been proposed
for avoiding nonglobal optima in computer vision [18],[3], combinatorial op-
timization [1], and elsewhere. Our approach is derived based on ideas from

information theory and statistical physics, and builds on the framework of
the deterministic annealing (DA) approach to clustering and related prob-
lems [16][15][17]. DA's probabilistic framework for clustering was derived by

applying the maximum entropy principle to determine the underlying dis-
tributions. In recent work [9], we have shown that the maximum entropy
approach unifies a larger class of optimization methods than was originally
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the distributions must be consistent with the formation of a nearest proto-
type classification rule. This structural restriction may be enforced via a
well-chosen parametrization of the distribution. An appropriate choice is the
Gibbs distribution,

e-Td(X,X~k )
P[x C Cjk] > 1 e_•dxm x ') (1)

which depends on the prototype vectors and on a scale parameter 7 which
controls the fuzziness of the distribution. As -y-- oc), the association proba-
bilities revert to hard classifications equivalent to application of the nearest
prototype rule. Note that this choice can be directly obtained using the
principle of maximum entropy, which provides stronger justification for the
resulting optimization method [10]. However, for conciseness we omit this
derivation.

In our approach, we simultaneously control the probability of error and
the randomness of the classifier. We start with a highly random classifier
with a high expected classification error rate and then gradually reduce both
the randomness and the expected probability of error. A natural measure
of randomness is Shannon's entropy. In fact, Jaynes [5] showed that while
there may be infinitely many distributions which satisfy expected value con-
straints, the least biased distribution is that which maximizes entropy. For
the classification problem, the expected value of interest is the average classi-
fication error < PR >. Thus, the riaximum entropy distribution {P[x C C0H]}
associated with the classification problem is obtained by solving

max HIi max {1 E EP[xGRj]logP[xGRj]} (2)
{Xjk b _ {X~kjo N(X,c)ET J

subject to
1

<P >= N yP[ (E Z xERc,).
(X,C)ET j

Here the cost of misclassification is p(cj) = 1 if c : j and 0 otherwise.
Effectively, entropy maximization over the distribution is achieved through
optimization over its parameter set. Solving this problem is equivalent to
solving the unconstrained minimization of the Lagrangian:

ruin L= rmin m 3< P, >-H, (3)

where fl is the Lagrange multiplier used to enforce a constraint on < P, >.
For fi 0, the sole objective is entropy maximization, which is achieved by the
uniform distribution, choosing the prototype vectors to be non-distinct. For

oo, minimizing L is equivalent to minimizing the probability of error Pe,
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leading to a non-random (i.e. H -0 0) classifier. This solution can be obtained
within our probabilistic framework by choosing all prototype vectors to be
distinct and sending -x- ,. Thus, we observe that an annealing approach
is nalurally obtained by mininizing the Lagrangian starting from /3 = 0 and
lracking the soliition while increasing /3 towards infinity. In this way, we
oblain a sequence of solutions of decreasing entropy and cost, leading to a
"hard" classifier at, lthe limit. The aiiealing process can avoid local optinba
of the cost. and is motivated by the physical interpretation of the Lagrangian
as a Helmholtz free energy [9]. We can rewrite the Lagrangian explicitly as:

L + Z P[x ER 1 i]((cj)+logP[xC ni]) (4)
(X~')E'T j

E ' (E P [x C R3 L.j ] 1, L,.A,
xX,C)ET J (X,C)ET

Here, parentheses identify Lj, the contribution to the cost when the feature
x is assigned to class j, and L£, the average contribution for this feat ure. The
necessary conditions for minimizing L at any /3 are :

Z (L~j L,) P[xxGCij= 0 , Vj lk (5)
(X,,')CYdxJ

an I

0-1- Z ZLx 2 (P[x C Rje.. r- 3)=° (6)
(X~c]T 3

Here u•. is the average distance from x to a prototype, i.e. E. E P[x G
3j k

Cj,(.d(x, xjlk). and ,nj is the contribution to this average from the prototypes
of R, i.e. ,-j = E P[x E C`Jkld(X,Xjk.).

k

These conditions can be interpreted, appropriately, within the context of
supervised learning. The conditiou for a prototypc vector suggests moving it
away from (towards) vectors that it "owns" probabilistically through P[x G
(j]. and for which the cost L.,j incurred by classifying to region Rj is greater
than (less than) the average cost. The optimality condition for the scale
parameter -, leads to a similar interpretation. Essentially, -, is either increased
to solidify ownership of a point by a region if the cost is small, or is decreased
to weaken ownership of a point if the cost is large. The optimization at each /3
can be implemented by gradient descent or any other function minimization
technique. For/3 - x. Jf - 0 and < P >- P,. At tais limit, our method
terminates satisfying the necessary optiniality conditions.
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3 Results

We have performed experimental comparisons of our nearest-prototype method
with the learning vector quantizer (LVQ) [7]. As an example, consider the
two-class data of Figure 4. Each class consists of a Gaussian mixture with
three components. We designed prototype-based classifiers with three pro-
totypes per class, using both the LVQ and DA optimization methods. LVQ
solutions were generated using the public domain LVQ-pak software, running
both an optimized LVQ (OLVQ) learning phase, as well as a fine-tuning phase
with 500,000 iterations. The learning parameter p was set to 0.03. Ten LVQ
solutions were generated based on random initialization and in all cases the
method was unable to discriminate the class 0 "minority" component in the
upper right of Figure 4a (which retains only 5 % of the training set mass).
Apparently, the initialization did not select a prototype from the class 0 mi-
nority component, and LVQ is unable to move class 0 prototypes through the
"wall" of class 1 data which separates them from this component. The best
LVQ solution, which is shown in Figure 4a, achieved P, = 7.7%. Increasing
the number of prototypes, we found that LVQ was only able to discriminate
the minority component when 21 prototypes per class were introduced, and
in this case the method achieved P, = 3.4%. The extremity of this sub-
optimality does suggest that the LVQ-pak initialization could be improved.
For example, if an initialization of prototypes based on Isodata clustering
followed by allocation of prototypes to the majority class of the cluster were
used, much fewer than 42 prototypes (but greater than six) would suffice to
find good solutions. However, this example does demonstrate LVQ's suscep-
tibility to finding poor solutions. In fact, we also performed gradient descent
on < P, > and found that poor solutions were obtained in this case as well -

excepting omnisicient initialization in the vicinity of the optimal solution, the
best performance obtained for six prototypes was P, = 7.0%. It thus appears
that strict descent methods will fail on this example unless given an excel-
lent initialization. By contrast, the DA method using only five prototypes
achieved the solution shown in Figure lb, with Pe = 2.7%. Note that the DA
method is independent of the initialization, placing all prototypes together at
the global data centroid (marked by X) at 3 = 0 so as to maximize entropy.
(Such an initialization is in fact "fatal" for a strict descent-based approach,
as the associated learning rule will not permit a class 0 prototype to pass
through the "wall" of class 1 data.) Then, as f3 is increased, the prototypes
separate, reducing the entropy as well as < P, >. This example demonstrates
the ability of the method to avoid local optima, since the DA optimization
does succeed in moving a class 0 prototype from X directly through the class
1 data "wall" to correctly classify the minority class 0 component and achieve
what appears to be the optimal piece-wise linear result. (Here, two of the class
0 prototypes are non-distinct, so the solution effectively uses five prototypes.)

In addition to this example, we have tested our approach on the "syn-
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thetic" example from [14], as well as on some other complicated syntheti-
cally generated mixture examples. On the example from [1d], our approach

achieved 1, = 8.97 on the test set using eight prototypes and P, = 8.6%
using twelve prototypes, in comparison to LVQ's P, = 9.5% based on twelve
prototypes. For general reference, an MLP with six hidden units achieved
P, = 9.47(. For complicated mixture examples, with possibly twenty or more
overlapping mixture components and multiple classes, we have found our
method to consistently achieve substantial peforniance gains over LVQ. As
an example, we generated training data for a four-class problem involving
twenty-four overlapping, non-isotropic mixture components in two dimen-
sions. We designed nearest prototype classifiers with 16 prototypes (four
per class) using both LVQ and DA. The best LVQ solution based on ten
random initializations achieved P, = 31%. By contrast the single IDA solu-
tion achieved P'. = 2X7. This comparison is typical of what we have seen
lhrough extensive experimentation. Similar performance gains are achieved
for higher-dimensional data sets, but we have restriced these examples to two
dimetsions for visual illistral ion. While for certain problems other structures
such as MLPs or RBFs may be inherently superior t~o the prototype-based
struc, tire discussed here, our results demonstrate the potential of the opti-
mization technique. -Moreover, as we describe in [10], our method achieves
similar performance gains in optimizing the RilF andI MLP classifier struc-
tures.
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Fig'ure 1: A two-class example, with a 3-component Gaussian mixture in each
class: a) The LVQ solution, using three prototypes per class, with P, 7.7%.
b) The DA solution, using three prototypes per class, with Pe 2.7%. Note
that since the solution at 13 =0 placed all prototypes at the global centroid
(X), the DA optim-ization has allowed a prototype for class 0 to "pass through

wall" of class 1 data in order to correctly classify the minority "0" mixture
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SIMULTANEOUS DESIGN OF FEATURE
EXTRACTOR AND PATTERN CLASSIFIER USING

THE MINIMUM CLASSIFICATION ERROR
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2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-02 Japan

ABSTRACT - Recently, a minimum classification error training algorithm
has been proposed for minimizing the misclassification probability based on a
given set of training samples using a generalized probabilistic descent method.
This algorithm is a type of discriminative learning algorithm, but it ap-
proaches the objective of minimum classification error in a more direct manner
than the conventional discriminative training algorithms. We apply this al-
gorithm for simultaneous design of feature extractor and pattern classifier,
and demonstrate some of its properties and advantages.

1. INTRODUCTION

Juang and Katagiri [1] have recently proposed a minimum classification error
training algorithm which minimizes the misclassification probability based
on a given set of training samples using a generalized probabilistic descent
method. This algorithm is a type of discriminative learning algorithm, but
it approaches the objective of minimum classification error in a more direct
manner than the conventional discriminative training algorithms [2]. Because
of this, it has been used in a number of pattern classification applications
[3, 4, 5, 6, 7, 8]. For example, Chang et al. [3] and Komori and Katagiri
[4] have used this algorithm for designing the pattern classifier for dynamic
time-warping based speech recognition, Chou et al. [5] and Rainton and
Sagayama [6] for hidden Markov model (HMM) based speech recognition,
Sukkar and Wilpon [7] for word spotting, and Liu et al. [8] for HMM-based
speaker recognition. More recently, the minimum classification error training
algorithm has been used for feature extraction [9, 10, 11, 12]. For example,
Biem and Katagiri have used it for determining the parameters of a cepstral
lifter [9] and a filter bank [10]. They have found that the resulting param-
eters of cepstral lifter and filter bank have a good physical interpretation.
Bacchiani and Aikawa [11] have used this algorithm for designing a dynamic
cepstral filter. Watanabe and Katagiri [12] have used a class-dependent uni-
tary transformation for feature extraction whose parameters are determined
by the minimum classification error training algorithm.

'Present Address: School of Microelectronic Engineering, Griffith University, Brisbane,
QLD 4111, Australia

0-7803-2739-X/95 $4.00 © 1995 IEEE
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as to the class models of the baseline configuration prior to distance
computation.

" Configuration 5: Here both the transformation T and the class mod-
els are computed independently using the MCE training algorithm.

" Configuration 6: This configuration is similar to Configuration 3,
except that the transformation T is made class-dependent; i.e., we now
have K different transformations, Tk-, k = 1, 2, ... , K for K different
classes. We apply transformation Tk to parameter vector X before
computing its distance from the k-th class.

" Conifiguration 7: This configuration is similar to Configuration 5,
except that the transformation T is made class-dependent (similar to
Configuration 6); i.e., we now have K different transformations, Tk,
k = 1, 2, . .. , K for K different classes.

Note that Configurations 2,3,4 and 5 use a class-independent transformation
as shown in Fig.. 2; while Configurations 6 and 7 use a class-dependent
transformation as shown in Fig. 3.

Distance
Measure

.....................................FetrAnlss -" • i

Feature Analysis
C Recognized

Signal X 2 M Class

N

k

..............

Figure 2: A pattern recognition system with class-independent transforma-
tion.
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2. DefOE TRAIiNING ALGOITUTRM,

In this (clion, we. describe hrijefly the minimum classification erroi (MC'L)
trainin- al ociit liiu. For inote details, see, [1]. The NICE algoi itlinn i. descrihed
here( 0on1 fat C on fig-uration i 5.It can he extendied to other conho i irt ions ini
a st rai 'htforward manner.

Ini the pattern recognihion sy stem shown in Fig. 1. the Iinpuit par ameter vector
"IJis tr ansformed to a featr i vect(Loi Y (= TX) and classifie (inito (lass 1'if

I)j < IDj for all j $ i. (1)

whl-et DiP is the distance of fteatuiii yector Y from class i.In thi preseiii
paper, w.e us simple Euclidean (list an cc measure t~o (lefinle tisi dlistaince. 1t
is giveii h"

Di =- 1 Y - miii 1 H2

= 1T - m Hi)112 (2)

whe-e m'ý is i lie prototype vector representing the class i.

Here, we are g-iveni a total of P labeled iraiiiiii vectors: i.e., we have P pa-
rameter vectors XN ) X ( 2)7 .. 1 X(P available For training with correspond-
in g classi*ficat ion (,(I), C,2)..,((p)< known to us. Our aim here is to Ilse
the MCE algorithmn to estimate the transformation runtrix T antd class pro-

totyvpe vectors nP ii M (2)'. o 1)(K using these laheled trainiing vectors. The
Procedure for doing this is descrihed helow.
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The distance of pth training vector from class i is given by

Dý) 11 yI Y(P)-m(p)i 112

11 TX(P) - ?n()112
D (D ))

T •='1~ JXP J i 77,! (3)

We use this distance to define the misclassification measure for the pth train-
ing vector as follows:

d(p) zz D(P) - D(P)(4

c N() (4)

where D(p) is the distance of pth training vector from its known class C(P)
C(p)

and the distance DN(P) is computed from the relation
D~)=argmn r.(5)

N(P) - gmn D)
= ii C(P)

The loss function L(P) for the pth training vector is then defined as the sigmoid
of the misclassification measure as follows:

L(P) f(d(P))
1

+1 e-cxd(P) (6)

where o( is a parameter defining the slope of the sigmoid function.

The total loss function L is defined as

PL = 1: L(P). (7)
p=

1

In the MCE algorithm, the transformation matrix and class prototype vectors
are obtained by minimizing this loss function through the steepest gradient
descent algorithm. This is an iterative algorithm where parameters at, the
(k + 1)th iteration are computed from the kth iteration results as follows:

T8j(k + 1) = Tj(k) - q ,OT• 1 (8)

1 )(k + S (k) - 77 (N(P)) (9)

and

MrnC(P))(k + 1) m= rn (k) - 10nc( ), (10)
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where il is a positive constant (known as the adaptattion constant) and

0 L P - )) ( ,-,'(P)) -_ ((er))) (o

011 j P=1 =

0 L . V (P) (C:, 00

c - _2o f(d,(,))( I f(d(I",) 7S'")'
(S P-=) (j•12)

For the initialization of the MCE algorithm, the transformation matrix T
is taken to be a unity matrix. The prototype vectors for different classes
are infitialized by their maximum likelihood estimates . by their class-
conditioned means).

3. RESULTS

The MCE algorith1 is studied here on a multispeaker vowel recognition task.
The Peterson-Barney vowel data base [13] is used for this purpose. Ilere
each vowel is represented in terms of 4 parameters: fundamental frequency

and frequencies of the first three formants. The data base consists of' two
repetilions of 10 vowels in /hVd/ context recorded from 76 speakers (33
men, 28 women and 15 children). Fundamental and formant frequencies were
rieasured by Peterson and Barnev from the central steady-state portions of
the/h\d/ utterances. We use the first repetition for training and the seconid
for testit'. We use the Euclidean distance nteasure for classification of the
4-ditiensional parameter vector into one of the 10 classes. The model for
each class is determined as the mean vector of the training patterns of that
c4ess, In our implementation of the MCE training algorithm. we use I•e
steepest gradient descent algorithm with the adaptation parameter updated
every iteration using a fast-converging algorithm described by Lucke [14]

In order to study the convergence properties of this algorithm, we study it
for( Configouration 5. Figure 4 shows the the loss function, recognition error
on trainintg atid test data as a function of iteration iumber. It can be seen
fromn this figure that the loss function is decreasing with number of iterations
and the algorit hom is converging reasonably fast (within 500 iterations). Also,
recognition results on test data are similar to those oit training, showing the
generatizat ion property of the algorithm.
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The MCE algorithm is studied for all the seven configurations. The results

for different configurations are listed in Table 1. We list in column 2 of this
table the total number of free parameters used in the transformation and the
classifier. Column 3 of this table lists the number of parameters computed
by the MCE training algorithm. The numbers shown within square brackets
in columns 2 and 3 correspond to the vowel recognition task used in this
study, where K 10 and D 4. From this table, we can make the following

observations:

(a) Loss function
400,,,

00200-
.-J

0 500 1000 1500 2000 2500 3000
Iteration number

(b) Recognition error rate (in %) on training data
m60|•

*~40

S20 F

0 500 1000 1500 2000 2500 3000
Iteration number

(c) Recognition error rate (in %) on test data
60

20

0 500 1000 1500 2000 2500 3000
Iteration number

Figure 4: Results for Configuration 5 as a function of iteration number. (a)
Loss function, (b) Recognition error rate (in %) on training data, and (c)
Recognition error rate (in %) on test data.

1. The MCE training algorithm performs better than the ML algorithm
(compare Configuration 1 with Configuration 2).

2. The recognition performance of the pattern recognizer improves with an
increase in the total number of free parameters in the transformation

and the classifier.

3. For a given number of free parameters, the recognition performance
improves as the more number of parameters are updated by the MCE
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Table 1: Recognition error rate (in %) for different configurations of fea-
ture extractors and classifiers studied using the minimum classification error
(MCE) training algorithm.

Confi- Total no. of No. of parameters Recognition error rate
guration free paramecters updated by MCE Training Test
Conf. I ND [40] 0 [0] 48.29 48.16
Conf. 2 ND [401 KD [40] 34.47 36.18
Conf. 3 D2 + KD [56] D2 [161 33.16 33.29
Conf. 4 D2  K ND [56] D 2 [16] 13.95 16.32
Conf. 5 D2 + ND [56] D 2 + ID [56] 9.87 11.45
Conf. 6 KN(D 2 + D) [200] ID2 [160] 9.47 12.37
Conf. 7 K (D 2 + D) [200] K(D 2 + D) [200] 9.34 12.76

training algorithm (compare Configuration 3 with Configuration 5 or
Configuration 6 with Configuration 7).

4. Observe Configurations 3 and 4. Both of these configurations have same
number of free parameters and same number of parameters are updated
by the MCE training algorithm. But, Configuration 4 gives significantly
better results than Configuration 3. This is because in Configuration 4
the transformation T is applied to the parameter vector X as well as
the class models prior to distance computation.

5. Observe Configurations 5 and 7. Configuration 5 uses a class indepen-
dent transformation, while Configuration 7 uses class-dependent trans-
formations. Therefore, Configuration 7 shows better recognition per-
formance than Configuration 5 on training data, though the difference
in the recognition rates for the two configurations is small. However,
note that recognition performance of Configuration 7 on test data is
inferior to that of Configuration 5. This happens because the number
of parameters updated by the MCE algorithm are too large for the lim-
ited amount of data available for training and, hence, the results do not
generalize to test data properly.

4. SUMMARY

In this paper, we have studied the use of minimum classification error (MCE)
training algorithm for the design of the feature extractor and the pattern clas-
sifier. W•e have investigated a number of configurations of the feature extrac-
tor and the pattern classifier, and have demonstrated a number of properties
and advantages of the MCE training algorithm.
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Abstract

Subspace Method (SM) is one of fundamental frameworks for
pattern recognition. In particular, its discriminative learning ver-
sion, called Learning Subspace Method (LSM), has been shown
quite useful in various applications. However, this important de-
sign method leaves much room for further analysis due to the lack
of a link between LSM and the ultimate goal of pattern recogni-
tion, i.e. the minimum error situation. In this light, we investigate
in this paper SM from the viewpoint of the Minimum Classifica-
tion Error/Generalized Probabilistic Descent method (MCE/GPD).
Applying MCE/GPD to SM, we formalize a new discriminative
subspace method, called the Minimum Error Learning Subspace
method (MELS), which enables one to directly pursue the mini-
mum error recognition. This paper also provides a rigorous anal-
ysis of the MELS's learning mechanism as well as a comparison
between the conventional LSM and MELS.

1 Introduction

Subspace Method (SM), especially its discriminative learning version
called Learning Subspace Method (LSM), has been shown quite useful
in a wide range of pattern recognitions because of its computational sim-
plicity and robustness to statistical pattern variations [1, 2, 3]. However,
due to the lack of rigorous analysis from the viewpoint of the Bayes de-
cision theory, this valuable recognizer design method still leaves much
room for further mathematical investigation.

In the meantime, the Minimum Classification Error/Generalized Prob-
abilistic Descent method (MCE/GPD) has provided new, general math-

0-7803-2739-X/95 $4.00 © 1995 IEEE
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ematical bases for designing pattern recognizers aimed at minimizing
recognition errors, or in other words, achieving the optimal minimum er-
ror situation [4]. Actually, it has been shown that the widely-used Learn-

ing Vector Quantization (LVQ) is a simple version of the MCE/GPD-

based distance classifier [5]. The analogy between LVQ and LSM natu-

rally suggests an analysis of LSM from the MCE/GPD viewpoint.
In this paper we investigate how the SM's discriminative power can

be increased in the MCE/GPD framework. We also formalize a new dis-

criminative subspace method, named Mlliimam Error Learai•g Su bspace
mdhod (3MELS). This paper provides detailed analysis of the learning

nature of MELS and proves that this proposed method leads to at least.

a locally optimal recognition situation. A comparison between the con-
ventional LSM and MELS is also discussed.

2 Conventional Subspace Methods

2.1 Pattern Recognition by Subspace Method

We consider the problem of classifying a d-dimensional input pattern

C C Rd into one of the K classes {C,}j 1 using the following decision
rule:

C(-B) = Ci if i= argmaxg, (ax), (1)

where g,(x), called the discriminani funclion, represents the degree to

which x belongs to C, and C(.) is a recognition operation. In the SM
framework, an individual class subspace in the d-dimensional pattern
space is designed for each class, and each input pattern x is classified as

the class giving the maximum value of the orthogonal projection of a.
That is to say, the discriminant function of the s-th class (s = 1, 2, ..., K)
is defined as

ga;,11~ a 2  (2)
Us = [ Usi 's,2... ]sp 1, (3)

U'sj = [ 1t,l,i 11s,2,i ... %s,d, i ]T ( = 1, 2,'"., p ), (4)

where I denotes the Euclidean norm, Us is the d x p, (p, < d) full-
rank base matrir whose column vectors span the s-th class subspace V,,
and the d x d matrix PET, is thb (orihogonal) projection matrix onto V,

and is expressed as

PU,= -U(UTUj-IU T (5)

where the superscript T and -' denote the transpose and the inverse,
respectively. Consequently, the discriminant function is rewritten as

g' (x ;Us) Z=TXUs(Us Us )Ux, (6)

and it turns out that the method of designing each class subspace {V, }I- 1
or base matrix {U l'ý , determines the quality of recognition decision.
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2.2 A Brief Review of LSM

The most fundamental algorithm for designing subspaces is the CLAFIC
method, which designs each class subspace by using Karhunen-Lo~ve
expansion [1]. Since it designs each class subspace independently without
considering the influences of other competing classes, it is not necessarily
the case that the CLAFIC method can reduce the recognition errors
efficiently. To alleviate this inadequacy, the Learning Subspace Method
(LSM) was developed by Kohonen [1]. In LSM, each subspace is trained
according to the recognition result of each design pattern so that the
projection onto its true class gets larger while that onto each different
competing class decreases.

Let us consider the subspace design problem using a labeled training
sample set ?= {x,J}. Suppose that an input pattern x, is selected
randomly from J? at the t-th iteration. In LSM, if xt belongs to the
k-th class, each orthonormalized base matrix U, is adjusted according
to the following rule:

UJ + (IP+ X t[xT)Uk(• (the true class), (7)

Yj (0 =J(I - 11jXtXt)U/'-1) (the competing class) (8)
(j = arg ,#max g,(xt; U~t-')))

UVt) = U (t) ) (s = k,j), (9)
Uýt) = Ui (t-') (i = 1, 2, ..., K; i :A k, j), (10)

where I denotes the identity matrix, Pk and jpj are the positive real

numbers called the learning coefficients, and the ps x p, matrix T~t)
represents the orthonormalization operator for the column vectors of

6,(t). Detailed discussions of the properties of LSM are made in [1].
As mentioned in [1], the optimal (in the sense of minimum recog-

nition errors) values of Pk and pj are very difficult to find. Actually,
LSM was vigorously investigated with regard to convergence properties.
However, its capability to attain the minimum error situation has not
yet been sufficiently analyzed. These values are thus usually specified
heuristically, e.g. by performing certain preliminary experiments. Ob-
viously, a mathematical method is needed to determine these learning
coefficients so that one can directly persue the minimum recognition
error probability by using the above formula.
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3 Discrihminative Subspace Method for Min-
imum Error Recognition

3.1 Formalization of MELS

The learning mechanism of MCE/GPD is based on gradient search opti-
mization. The correction vector at each iteration step can be derived by
differentiating the loss function in the recognizer parameters. Detailed
discussions on MCE/GPD are made in [4. 6].

The first step in the MELS formulation is to derive the first-order
derivative of each discriminant function. Its result is summarized in the
following theorem.

Thaeorennm 1 The first-order deriealive of g, (x; U,) with respect to U,
is gih.eO as

v~ U,(.e;U,) 2sP -, rTUs(UTU,)-', (11)

e-h ýre thinc iatrix d dfferentiation is defined as 7A ( ,j) (A
01,']

L - S5 UUY t f (12)

nlich is an orthogonal projecoa operator onto the orlhogon~al cornple-
a eat of V, = range U,.

Proof. See Appendix A. El
Next, by applying the MCE/GPD adjustment rule to the above

derivatives and operating the orthonormalization, an MCE/GPD-based
subspace design algorithm, i.e. the MELS method, is formulated as fol-
lows:

The M -S maethod

At the t-th iteration, if a randomly-selected training pattern xt belongs
to the k-th class, then

&0)!• = u!•t-1) t v •(;Y •) (13)
U -- L/-F)T (")- ( 1= , 2, IK), (14)u(14

(1.5)

V• p (.o- ••Pi - 2?%_•)xiTU!i-) (16)

= u ... U •Q R, (IT)

-> 0, x 1)) (> 0) denotes the derivative of the loss fiic-

io I 4] t,•(; 1 (c-1 denotes the derivative of the in isclassificaton2
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measure [4] (Pk,k < 0, Pk, > 0 (s k k)), and each T(t) denotes the

orthonormalization matrix applied to U,

If we take the L., norm in the misclassification measure (see [4]), the
MELS algorithm leads to its special form named MELS*:

The MELS* method

At the t-th iteration, if a randomly-selected training pattern xt belongs
to the k-th class, then

0(t . U-1,DL)T(t--l) (i
Uk~ ~( + 2,-,f'(xt; AY')t(~~~~ k U(8

- ()) " 'T) Ut- 1, (19)
-2Etf'(xt; (19)~-IXt

(=iargmax gs(xt;UY•-I)))

U(t ) - U()Tt) (,=k,j), (20)

UCt) U -l(i=,,..Kikj.(21)

It can be seen that this MELS* algorithm closely resembles Koho-
nen's LSM. The difference in their forms is that MELS*, unlike LSM,
includes the projection matrix Pk.

3.2 Convergence Property of MELS

One may think it trivial that MELS can achieve the minimum recogni-
tion error situation in the same way as MCE/GPD because it is simply
derived by applying MCE/GPD to the SM framework. However, the
fact that MELS includes the orthonormalization operation, which was
not used in the original differentiation-based GPD adjustment, seems to
require a further investigation of the learning convergence.

We first introduce the following theorem.

Theorem 2 Assume that IV-,,,fk(xt; A('-t ))I < oc (s = 1,2, ...,K;j
1, 2, ..., d;i = 1, 2, ... ,p,). Then, if the Gram-Schmidi orthonormalization
(GSO) is applied to the MELS parameter adjustment, the parameter se-
quence {U5t) (t = 1,2,...)} (s = 1,2,..., K) obeys the following rule:

U -t) = U5t-l) - EtVujtf(xt; A(t- 1 )) + O(E[). (22)

Proof. See Appendix B. 13
With this theorem and the theorems described in [6], we next verify

that MELS can attain the minimum recognition error situation. Define
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the following vector which corresponds to A [ U1 U 2 ... Urj] one to
one:

A = [ 11,,1 . s,j,i UKdp) (23)

Accordingly, the rule (22) can be expressed in terms of A as

A( jiA-1) - e•V~•(xt;A t-') + O(o-). (24)

There exist a d(ZI- p)-dimensional vector dt (I dII < oc) such that

S=X - (V AC ( t; Aet-x)) - d,) (25)

For simplicity, we define

A(t)- V7\,4 (xt; A(t-1)) - Edt. (26)

Furthermore, it can be seen that the Hessian matrix exists,

(w;AA) =V (k(X; A), (27)

since each orthonormalized matrix U(' is full-rank. Then, we reach the
following theorem guaranteeing the MELS convergence:

Theorem 3 iake the following assumptions: for all t C {1, 2, .. ,

al) 1V/ , A (n;A(t-1))l < oo
(s = 1, 2, ...,. .j = 1,2, ..., d i = 1 ,2, ..., p ,

a2) < AA 1(11/k(xt; A('-') - OtAA(t))AA@) >< > o,
where < +. > denotes the inner product and 0 < Ot < 1.

Then, if an infinite sequence of random observations xt is presented for
training and the parameter adjustment rule of (13,14) is utilized with
a sequence o• that satisfies J t -E oc and TE 2 < 0o, then the

parameter sequence {A(`;t= 1,2,...} according to iIIELS canoverges with
probaiblity one to a A' which results in a local minimum of L(A) under
the orthonormality constraints, where L(A), called the expected loss, is
defined as the expectation of L(o:x;A) over the whole pattern space X and
approxmnates (arbitrarily closely) the recognition error probability in the
case of the smoothed 0-1 loss function (see [4, 6]).

Proof Taking Taylor expansion,

(x (t)). = - k 1(io A('-'))'-E IdHV xt;kA('-A))11

K6' < dt7 VA 4(x,: At'-)) > (28)1

+ ;7K < AA(tI,71T(xt; A(Ol 0 AA(i)AA(A ) >

where the last term denotes the Lagrange's remainder term. By the

Cauchy-Schwarz inequality,

I < dT 17AI{(X; A(t -1)) > I < IlId, IIV 1,.(x,; At t -))I < no. (29)

"T'hle], the same proof as in [6] can be applied. 0
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4 Conclusions

We have studied the discriminative learning nature of SM from the view-
point of minimizing recognition errors. Based on MCE/GPD, we have
also formalized a new discriminative SM algorithm called the Minimum
Error Learning Subspace method (MELS). MELS is a slightly different
version of the conventional LSM and has been proven to achieve the
minimum error situation. This result significantly increases the SM's
applicability by providing the mathematical guarantee of training opti-
mality.

Appendix

A Proof of Theorem 1

First we show the following formulae related to matrix differentiation
without proofs: with proper-sized matrices C and X,

Vxtr(CX) = Vxtr(XC) = CT, (30)

Vxtr(CX T ) = Vxtr(X T C) = C, (31)

where tr denotes the trace operator; if a matrix C(t) is non-singular and
is parametrized by a scalar t,

d C(t)-i - -C()-1 Wd(d) C(-1. (32)

The orthogonal projection defined in (6) can be rewritten as

g(x;U) = tr [U(UTU)-IUTXXT]. (33)

Ilearafter we omit the suffix s for simplicity. Then, using the above-
listed formulae, it can be easily shown that the derivative of g(x; U)
with respect to U is expressed as

Vug(x;U) = 2xxTU(UTU)-I {VvF(V)}v=u , (34)

F(V) = tr(AY), (35)

A = (VTV)-l, (36)

Y = UTXXTU. (37)

Let vij be the (i, j) entry of the matrix V and am,,, be the (m, n) entry
of A. Considering that A is a function of V, the partial derivative of F
with respect to each entry vij is derived using a chain rule as

OF(V) P P OF Oam,,, OF )T DA I

-Oam Ov, --tr[ J•-j • j (38)
m=l n=8
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iL ( < i) _ •t.,Ik(xt;'A> t-''), (47)

U•) I (t)
) ('s,1 (48)

From (47) we can get
IjuiLt 112 1 + _IV21j (xi; A(t-))112 (49)

because of the orthonormality of U 1t-1 and Lemma 1. Therefore,

1 1
1---(-E M+(+EM)- - (-. , (50)

where M = 1IV,,1 k(XI; A(t-1))112. Then, by (48) and (50), and because
of the boundedness of IIVs,lfk(xt; A(t- 1))Il, u(') becomes

niU - ,( + o(e) + Y() ii() (51)s,1 -s,1 t •t 3s,1 Sl l(51

'E ( 2 (52)
ciE2) (1 + 2A-

F() (1 ±t - (1 - 2 .tm (53)

Lemma 2 Irn -y(1) 0.

Proof. Since lim,2_. 0 F(,-) = 0, and by de lHospital's theorem,

lirnn (t) lira dF(:*)/d(62)•;-•o"•, = • -o d(Et)/d(-2)t

lim- (1+ 2M)-i+ M=10.
St -0- H02

Accordingly, considering Lemma 2, we can say that

i(t) = (t-) - ctVsl k(x t; A(t- 1 )) + O(c2). (54)

Next, suppose that in each case i = 1, 2, ...,j the following equation
holds:

8it~ S'Z 6-'_,ifk (xt; A('-')) + o(et), (55)

and consider the case i j + 1. According to the GSO, the (j + 1)-th

normalized base vector u(t) is derived from u() as
n i d s e Is,j + s,1Ji= a

s -() - i ti T sj-(t) (56)

iSj+ Si $/ j1

V Mt

U(t) ,j+1 (57)
S~J+1 ý(t) 

(578
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Not~e that,

ul 8 i31 - t7 ,j+1te.(at; A(- 1 )). (58)

From (55) and (-8) we can get (i = 1, 2, ..., j)
71 t)T 'T (t.) ( 2

Si S,,, = O(t) (.59)
S) /(it-)a d e a1. 'hr orro

because of the orthonormality of U,_ t de
(56), (58) and (59), ah

(t) + (t- ) 
+

- ,, V5 ,J-m!r ( rt; A(t-)) + O(1•), (60)

and accordingly we can get

iv± 1 1 H2  1+ E2 t))1 2 + O(r2)

because of the orthonormality of Ukt-') and Lemma 1. Then, according
to the logic analogous to the case i = 1, we reach

-- rX7,j 1+i t; /i(-)) ([+ O(F2). (6)

This completes the proof according to the mathematical induction.
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A UNIFYING VIEW OF
STOCHASTIC APPROXIMATION,

KALMAN FILTER AND
BACKPROPAGATION

Enrico Capobianco*
University of Padua, Statistics Department

Abstract

In this paper the relationships between the Stochastic Approxima-
tion, the Kalman Filter and the Backpropagation algorithms are inves-
tigated. We show that when the Neural Network architecture at hand
can be formalized such that the approximation of the optimum for a
nonlinear objective function is the problem for which we seek a solu-
tion, then both Stochastic Approximation techniques and appropriate
Kalman Filters can be employed in order to reach the goal but the lat-
ter can also handle various structural characteristics of the stochastic
processes involved and suggest a more efficient two-step estimator.

1 Introduction

Recent developments of neural networks have required comparisons with sta-
tistical and control-systems approaches in order to verify the potential gains
from using neural nets for statistical parameter estimation, nonlinear dynamic
system modelling and identification, time series prediction, optimal and sub-
optimal filtering etc. Various algorithms have been proposed and tested on
a real or simulated basis and they showed interesting results. Other studies
have considered the opportunity of unifying the theoretical concepts behind
the construction of the practical algorithms; this paper belongs to this sec-
ond category and is devoted to synthesizing the most important learning pro-
cedure, i.e. the backpropagation algorithm, with stochastic approximation
techniques and Kalman Filter algorithms. The paper proceeds as follows.
Section 2 describes how the backpropagation algorithm is easily embedded in
the stochastic approximation framework. Section 3 introduces the extended

*This paper was prepared at Stanford University while the author was a visiting research
scholar with the PDP research group.
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and J i crated versions of the Nalman Filter and shows the relationship existing'
vith the (-atiss-Nexxt on method. S(ection 4 points out, the hasic advantages
Itoal can dcrive from working wvit h a state space represe ntation of the neural

network and introduces a two-step parameter estimiation procedture. Section
5 sfrthe conclusions.

2 Backpnropagaticn and Stochastic A morox~ma=
tioanc algoyithaaas

Pollov,,ing [81, snppose xve have a nonlinear ohject ive function j( XI 0) xvherc
fRk x 0 - Rt. Ni is a k x i random input vector and 0 G 0 C RP

represe nts the vector of, unknown-i parameters. We want. to use this fuinction
fcr forecasting the ranidomn variahle yt and to ilo this we allow the folloxviDg
sing~le htdden lax-cr feedforward network structuire for f(Xi, 0):

f(X~,,0)- '+ 'Tr;)()
j=1

X anid F : R - ft (a hounded andI continuoslv different iahle func-
tion ). C'oinsidr that J'(Xt,0) is an approximation of the ohjective function

x ) ]E(yý /A--). InI this nonlinear least, square set-up we seek a solution 0ý
I o ai~ [E( [!,,,f X 0)]2)], or equivalently to E(Vf f(XI, 0) Lyt - f'(XI, 0)1)

h-\ li Torpr esciit ing the gradlient I- x 1 vector calctulated w.r.t . 0. A xvery
,[-- .n' xlraixad wtxa t~o solve this problem i to employ the liohhmns-TMonro

R A~ 1)xS ochastic A pproxuimat~ion algorithm, xvhose structure is gixven hy:

0-,+ 0 1 + 6t V f(XM, 0) ["'i - f (Xt, 0)] (2)

hx~is recinon is that iof a Stochastic (" radicnt method and there fore g-eneral-
IUe ie3.ckpropagatioii '13P) algorithmn [121 for neural netxwork learning in

allov -ii, for a t; tine varvi og learning rae. In [8] some modifications to the RAM'
ar i em presen1tedl in order to speed ttp the convergence rate anid thtis

:11hld Pt tinss-)\ cxvion stip at each tupdat lug stage ol taming'1 a Mlodifiedl

0,+t -01.-61 cdl_ a VfX, ! 00)[m - f (Xý 0ý) 3

t+1 I + 6i [77 of(X , ,Ot) )Vjt(X1 . 0I - Lt](I

nw ((icD'.L) 0')' is the nexv aiugmexnted p)aram eter victor As
o' trhe ahove uxxodfif'cationi and oither technical devices emp-loy ed III

orcý ý void itierica4 prohleiims and deal xvithl the coiipntiatmouna buor-

,1, illC--d th nov a xiiwlgorithm anid therefore lie cor~respondeni g~enetalized
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backpropagation scheme are able to perform with a better convergence rate
than the simple RM scheme also when moderate dependence is present in the
data. Of course the approximation to E(yt/•Xt) is only locally optimal, but
it's nevertheless important to relax the usually retained " i.i.d." assumption
about the stochastic process generating the data. Then, the final important
contribution given in [8] is that of showing the consistency and asymptotic
normality of the designed estimator, under appropriate conditions on the
learning rate (i.e. bt = (t + 1)-i).

3 Extended and Iterated Kalman Filter algo-
rithms

Artificial Neural Networks can be conveniently cast in a state space represen-
tation. A general nonlinear state space model is given by-a system equation
xt+1 = gt(xt) + wt and a measurement equation yt = ht(xt) +- vt where ga(.)
and ht(.) are nonlinear functions. Consider now a k-layered feedforward net-
work structure described as in [3]:

Nk -1
-kj k--!,kok-1+k(5'01 o, - (5)

1=1

where the input of the jth node in the kthl layer is given by the sum of the
product of the connection weight w with the output and a bias parameter, and

0 F(ik) (6)

where the output as a function of the input through F : R -- . Given the
standard BP procedure:

kW-I'k(1 + 1) = t -l,k(,) - 5k(t)ok-1(t) (7)
WijwIj i• - 7

where 6 is the learning rate and cj (o_ - yk)Fl(iý'), we can rewrite the
network in state space (and usually compact notation) form as:

Wt+l= Wt + G&j (8)

Yt= Ot + Th (9)

where 7h is the output error, G~t is equal to the correction term' of the
BP recursion (7), but with only ýt characterized by pure erratic behavior,
and where the signal in the measurement equation is actually Ot(Wt). As a
matter of fact in this framework the Extended Kalman Filter (EKF) and/or
the Iterated Kalman Filter (IKF) represent the master estimation scheme,

1The matrix G separates in a convenient way the deterministic components from the
purely random ones; see [3] for details.
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since standard approximations are introduced in order to derive a suboptimal
filter for the signal or to forecast the observed random variable. The general
nonlinear functions git(.) and ht(.), when sufficiently smooth, are expanded
in Taylor series about the conditional means qt/ and £t/ti-, thus obtaining

.J,(xt) = gt(dtlt) + Gt(xt - •:•/l) + ... and hj(xt) = ht(i 1,/,_1) + H,(xt -
Xzl/t-) + .... A formal way to operate with a more accurate algorithm is the
following one 2 ; starting from the EKF algorithm:

i+ = ýý- + K(y - h(i-)) (10)

P+ = (I - KII)P (11)
H = hl(ýý-) (12)

K = PH'(HPH' + R)-' (13)

and given x x we can obtain the Iterated tKalman Filter as follows:

zi+= + Kit'( - h(xit) - Hit(Sc - xit)) (14)

Pit+, =- (I - £itHit)Pnt (15)

Hit = h'(Xn) (16)

I£•t = Pi1I-Ijt(HijPjtHI, + ±R)-1 (17)

Recently [2] have shown that the IKF algorithm is an application of the
Gauss-Newton (GN) method. It's common in statistics and econometrics to
work with estimators that aim at minimizing some sun-of-squares functions
like S(O?) = c•, where the vector c represents a residual term from an es-
tirnated linear/nonlinear regression or time series model. The vector of first

derivatives, or Gradient, in this case is v(O) as( = 2 -/ and the

Hessian is given by 1/(O) = S(s, 2 Z -' Otf, - a2" cj]. Several schemesdsoo' as bas baeaeare able of iteratively finding a solution to the initial minimization problem.

The most general one is the Newton-Raphson (NR) method, which is given by:

0'a Ic act 0 2e1 ac (18)-00 Wo, aMaoW 0- a

Since the term involving second derivatives is usually small when compared
to the first derivatives product term, the GN scheme approximates the above
iterative solution and presents a formula that is identical to NR, apart from
the term with second derivatives. In [2] this last approximate scheme is

2 A different filter can be derived by including more terms in the Taylor series expansions,

thus obtaining second order Extended IKalman Filters or, when ht (xt) can be linearized
about the updated conditional mean estimate it/t, it should be possible to improve the

linearization and thus the final estimate of the state variable (see [1]).
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applied to the log-likelihood criterion function 1(c) = c'Q~ c) derived from
a state space model whose components are z = [y, i]', rn(x) = [h(x), x]',
z - N(m(x), Q), with the 2 x 2 matrix Q having zero off-diagonal elements
and the variances R and P in the main diagonal. Given that in this case
S(O) =1 C 12= (c'Q- 1 c) and given the factorization B'B Q-, we have
c(.) = B(z - m(x)) and thus a -Bml(x); replacing this last term in the
GN formula, it is shown in [2] that, after some algebra, the same identical
updating equation employed by the IKF to estimate the state variable can be
obtained. Thus, by induction the iterates from the GN method correspond
to those from the IKF algorithm.

4 Some extensions and generalizations

Since we showed how to cast a neural network architecture in a state space
representation, we should try to exploit the properties of it. The most im-
portant fact is that from the Kalman Filter algorithm and its variants we
obtain, in a very elegant and immediate way, the likelihood function through
the well-known prediction error decomposition device [13]. The likelihood
function for the whole set of observations is obtained by the joint PDF, i.e.
L(y, 0) = HN~lp(yt/Yt_i), considering Yt- 1 the set of observations up to and
including yt- 1; since the innovation or prediction error computed by the filter
is n7t = yt - E(yt/Yt-1) and var(rp) = var(yt/Yt-i) = Dt, when the obser-
vations are normally distributed the likelihood function can be expressed in
terms of the innovations. Therefore the likelihood function in prediction error
decomposition form is:

ogL1 N lN I (19)logL-- 2 log2vr- 2El2g t
t=1 t=l

considering a k x 1 r7 vector and N observations'. For the case we study,
where a nonlinear model is the object of investigation and some approxima-
tions were used, the solution is of course suboptimal and close to the optimal
one according to the accuracy of the approximation involved. But there are
other aspects which deserve to be mentioned, like:

* the state space set-up can deal with data from stochastic processes
which are stationary or not and with parameters (those which build up
the functional form of the neural network, for instance) that are fixed
or time-varying

3
Under Gaussianity the filter delivers an optimal Minimum Mean Squared solution for

the estimation problem; under hypotheses different from the Gaussian, the filter gives only

a Minimum Mean Square Linear solution and the values which are computed are Quasi

Maximum Likelihood estimates, less efficient but consistent (and therefore useful to start

a recursive procedure).
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C)-- 1D Ot,0q$

Z -[IeYj'D- )( - D-pt 1) 7)] - D7 q, (20)
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- i~a

F nýc -vcc týx ve-oc o' derivatives 'c or -1 p and i - 1 A'

-lies Imjeccs ill ;,e COIIIIDLiteCC tilU~l 0 ) iiIDtddit Ooii IMtSD5CS 0f th Ic 1F;
---<wnd---atnewe' cnit of' the filtet 0I = 0 0L t. + 6< ... 0,,] cci

c-ci P a i~-ix se<t of 1t'11ON-C t olls ', aimd ci jac N ai11x>¾ iid~ lhIe iciicecical
aTý-i- erue ti-~ io> the~t icrixati'esIare qi I - i 67 -][D(' - DJ].

D<>D7]e BecTActt -1 1a;1i al a Id I liusil ill ( BAIŽI) ttlgocil 11 NID

t I hte -pu~ mio oil 01' th Ilessialm ix- Ih IcelNYlktDo~vic oil teci-tDocltct
- to ie 1> a theiDo I ilcialed cbioice Nre iDCvc b order

-th motCli ' 1 1D 10
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esi =o7 l' ? 1 IoCIm cl to the rc >isi'oic:

01o 0 1 o ' L
0 . r )(21)
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1ii- a given cli:<ctioll.
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of the powerful state space machinery for the neural network representation

has not been exploited. Then, from the inferential side it should be important

the possibility of employing two-step estimators that use likelihood informa-
tion (through its functionals involved) in order to reach better asymptotically

efficient final estimates.
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Abstract--- A new unsupervised competidtiveý leýarning rule is intro-
duced for to1 )ology-preserviiig map formation and vecto( r quianiti-
zat(ion1. Theý rule., calleýd Maxinumn Entropy leýarniiig Mulo (IVER),
achie~ve~s a glob ally- orde!red map by performing local wetight up-
dates only. Hec. contary to Kohonen's self-organizing inap algo-
rithin and( its many variations, 110 neighborhood function is ne~eded.
Theý ruleý yields an eq.(umprobable quantization of a 1- dimensional ini-
put p. d.f. Simulations are performed to show that the dlynamiical-
and~ converge~nce( propeýrties of MELI. are e~ssentially (liffe~remit froil
thoseý of Kolionýn 's algori thmn.

INTRODUCTION

One of the most. striking Featuires of the. sensory cortex is the topographical
organiza tion of its aireas. As a result. of this organization, nleighh~oring neurons
code for nieighh~oring p)osit ions ii) sensory space. Models accounting for the
formation of these topology-preserving maps from simple principles of self-
organization hiave heen proposed h~y several an thors [1-5]. Due t~o its inherent
simplicity, the. Kohionen self-organizing map is, the most. successful miodel ill
this series. It, has enjoyed a wvide range of applications (for pairtial overviews,
see [5,6]), and its computational capah~ilities [71 andl dynanmics are thoroughly
stu died and understood, at. least. for the scalar case [6,8-11]. Furthermore, it,
is helieved to offer a rather dletailed physiological inteirpietat ion of topology-
preserving map formation inl cortical seiisory area. [121.

The aim of IKohionen 's algorit~lmii is to est alhlish , inl anl uiisupervisedl way, a
map)ping from a higher (1-dimlensional space V of iiiput, signals onto anl equal
oi lower-d iiiieiisionial dliscret e lattice A of N formal neuriions. To each formial
neuron i c A correspondls a uiiiique weight. vect~oi wi 10l [w..zid] . The
inap assigns t~o each iiipult. v) [?)I, -. . , Mj (E V a unique neuron inl A and this
is accomplished h~y searching for neuron i* whose. weight, ve ctor is closest, to
the current. input, vector u:

11-j. - ?,1 < H1wi - ioH, Vi E A.(I

0-7803-2739-X/95 $4.00 @ 1995 IEEE
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T~O achieve a t opolt gv preserving ilia1ppilug, Incremeintal xWeight adjiistiiieit~s
are perforiin d not1 only of the( winning neuron hut, also of Its neighiboring
neuronis. using- a neighborhood function A:

Awi = iA(i, i* , )(v - wi), Vi C A. (2)

'I'he lcariinig rate q is usually gramlially dlecreasedl over timie I to zero. The
iwiegh hborlood fun Ct loll A Is I for i = r and falls off with (list-4a ce het ween

ai .ad i- i In lt tice coordl in tes. 'I'1w rainge spanunedl hy thle neighhborhoodl
funct ionl decreases-' over tniie until1 only the weight, vect~or of thle winnler Is
ulpdated (WiiirTk-Al YVA ) , and the IKohonen rule is Identical to the
st andaIrd unls'upervised coinpetitive learning rule (standard IJ( ).

Pj hereI~( Ir a ume of proletis withi the IKohionen algorithmi, however.
First ly, a too fas;t decrease of the range spanned by the neigihborhood funlctionl
lealds to topologicall defect's such as kitnks inl (the one-liieneisioial case. and
tv"Ists in tihe tv.o illuniisioiial case [11] whlichi are difficuilt, to Iron ouit, if at,
all1. Secoiidlv, due to this ranige, the error functionl which is minimillzed is
nio loniger quamdraitic since, cg. inl the( onle-diiiieiisioiial Case, tile exponlent,
2 isý rephi ced by ie + w a xi th 7i1 thle nunmber of neighhor neurons"- (21+I)-'+

betý are takenl into aIccouunt onl each side of thle xviminer [I 3]. 'I'liirdlv, Rit ter
and sehliut en [11lij hve shownvi that, also for the one-diiienisioinal case, the
weighlt denlsity is- proport bib

1 to pwith Ii) thle Input, piombaility deinsity
flinci ion (p.djf.) Al l alc~ nap, ideal ill teniils of resource uisage, would have
tOw weight11 density pcoportioinal to 7) (eqiiiprohahle 11ap) and the1 lKolioiiemi
a I golit hni Is iminhle t'o aIchieve t his.

11", thisý art11le iel , a nw lilsulwprvised Cmiipetitive leaIrnling r-tle Is Iintroduced
For tplg-reeiignap foriiat ion. The aim is to achlive with this iiiap
an1 eqll iprohah~lel quan~tization of the inputi space. The rule does not, require
a ueiglhborlloodl function aIs does the lKouoiieii rule and Its manN' variationls.
B itlo r' it a cliieves al globaly-onlmen'eu inn p by perfori i ing local Weight
1i1pulatis only. We~ will coniiuparc Its dyvnaiiics -which is comipletely different-
wviith hit of, thle lKoluoluenl algorit limi. The physiologicail Hiitcrlretlt ion and
th coaiplete formlmlbi~ltionti of thle rulle, will he addressed clsexxhere.

E;Q UIP]RD BABLE QUANTIZATION

( oiisde it 1ýtice A of N foriumil neuironus. 'Fil formial meuiroiis qiianiuize the
in~put soace, V Int partit ion cells or (piamt it ion regions. InI case of thue Ko-
ho01een il-oanrimithelO q11i~latzation regioiis are defined hy eq. (1) and thuis arc

'ix ,xdmJommlt . Ill Our caeu~maitizat oio regoions ice dlefined inl a different
vax ;ni, I i not nlecessar-ily dis"Joint, when thme iinp is iiot, globally ordered

(1Aloel) 'ssnie tunt V' ;iul( 1 have the samiii dimuensionality d and that
coon m no (1S a reguarilm diliiieiusiomual grib with a rect anigular topology. Since

iii tnpuo-y' is r'ct'ani-lmla, t he grid coiisiIst~s of a numbuer of (I-diiueiisional
h v o~ercilbe (inl Icpological sense III termls of grid coordina'tes) and the-se liv-
pcrclhucý ± dflne tie( ulula)ntmizt iou reg-ioIlis. The huypercuihes HIll, 1 ._ Hin
Fig1. IB !I,( so hepuiit i/at loll regionls of' th leBtt ice port oul Shoxxn mul

IPP 1 V( aPP a ia-i lw tl mgiay iyperciihes (unhlonlii'Kd I pliati
sa :oa to ;i)adjalcent to tHie oilter boirdler an3d ver-tices of A:he Bporclub.s



H0 , 1tb, H,,, 1I,1, It are constructed by extending the lat-tice towards inifinity.

The links (full lines) separating the "real" hypercubes (bounded quantizat ion
regions) that, share a common vertex on the border of A, are extended to-
wards infinity (stippled lines). In this way, every neuron j of A is a common
vertex t.o I adjacent. hypercuibes.

A B

Hg, H h H1

H1, HH

H H,.

Figure 1: Definit.ion of quanltizatioii region. (A) Portion of a lattice A with a
rect.angular topology, represented in I space. The bold line shows the outer

border of the lattice. (13) The same portion of the latlice but. with some of
the neurons and hypercu bes labeled. See text.

Following our reasoning, every hypercube defines a quantization region
and a. neuron will be ac(ivaled if the input, v act.iyvates one of it.s 2' adjacent
d-dliniensional hypercubes. We will assume t.hat., p(v) is a cont'inuous pl.f.:
in this way, the boundaries of the hypercubus will have zero area. and hence,
there will be a zero probability that, a single v will act.ivat.e two or more
adjacent, hypercubes unless these hyperciibes overlap.

Given tIha't, we have N neurons iii the grid, we want. that, every neuron is
activated with tlie same. proba.bilit.y N . In other words, we want, to estab-
lish al equiprobable qiianit.izat.ion of the (joint) input p.d.f. (Ill fact, this is
an approximat ion since such a. partitioning may not. exist, for a given input.
p.d.f.) This is achieved by performiiig iterated changes in the weight, vectors
wj corresponding to the vertices of the active hypercubes. An equiprobable
quant.izat ion is then achieved when each neuron is updalcd, and thus ac-
tivated, with equal probability. Finally, since informattion-theoretic entropy
maximization and equiprobable quant.ization are equivalent., our rule is called
Maxiimimi Entropy learning Rule (MER).

MAXIMUM ENTROPY LEARNING RULE

For the sake of exposition, consider again the 2-dimensional case (Fig. i).
There are two ways t o update t he vert ices of an active hypercube. Firstly,
we randoil y select, only one of them, say i*. The weight, vector of neuron i*
is then updat.ed as follows:

Aw;. = ijSiqu(e - wi.), (3)

with ,ign (.) the sign fiuniction. Secondly, a much faster method is t~o update
all the vertices of an active hypercn be, scaled according to the number of
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vertices. A SimiIe t hat the In put samiipie ui G H, (Fig. 2A ). The weight vectors
of nieurons j! k. A. ?1. are 1upd1a itd as follows:

Siqii. w,. ) Vi' G {j, k, 1, ml}, (4)

with nIi i the numiher of veritces of H, ie 4. As a result, of this, neurons
m .1 i will move with a fixed4 step size of III ibothI V-dimensions, towards

vas shown ini Fig. 2A (st ippled h iii ). Similairly, inI uase v) lies ouitsidle the
lattice A, 2 neuirons wvill he upda ted wxith si tep size I if ?, faces the hordier of
A (Fig. 21B) anid I neuron xs iti step s1iz q if it, faces one of the four corners
of' A (Fig. 2(C).

A B C.

11, 0

Figuire 2: U pdate of neiiron welight, vectors as a funict ion of active hypercuhes.
The full ind4 st ippled finies represeitt. the lattice before and after the update
(not, to scale). The current. input. (black (lot) activates hypercuhe H, inside
lhe lat tice (A), or imiaginary liyperciihes II, (B) an TI,, (C) outside the

lattice. The construction of the. imaginary hypercuhes is explainedl in Fig. 1.

InI order to focimonlize ME IR for the geineral Ic-.hiinensioiial case. where we
update every vertex of aii activye hypercuhe, we dlefiine 11111 (u), j -I,..,Q
as the code m embnershti p funct ions of the Q ty percubes of A:{ if I)C 1

kWe assuiiie that. 1(u) Is a. contiinuioiis p. dl. hence, the probabilit~y that. I
falls on oiie of the links equatls zero. Define Si as the set of 2 d hypercuhbes
that have neiironii as ia common vertex. The 1d-(iinjensional MEli rule then
beceomnes:

AWj = q E H1i (u)Siqit (v' - wi ), Vi C A. (6)
jcs,

Proposition 1: The average of eq. (6), with thtle average taken over t he envi-
ronmentt V, performs (stochastic) gradient. descent, onl the cost, flinicthonl

N

E = ZE Z hj,,,(?,) IV - W (7)
i=i jGS,

wvit hi I - wiIdenoting the (per letter) absolu te value of a) - i
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Proof: Following the definition of gradient. descent., the weights are updated
so as to reduce the cost. term introduced by the active hypercube:

OE
<Awi >v= -?I- flHj(v),Siqn(v - wi), Vi c A, (8)

jES,

and the latter exactly corresponds to the right hand side of eq. (6). QED.

Due to the latter proposition, we have that eq. (7) is a Liapunov function.
Furthermore since E is radially unbounded, convergence will hold "in the
large": when wij - co • E - oo, i = 1, ... , N, j = 1, ... , d.

Proposition 2: In the one-dimensional case, MER is guaranteed to converge
on average t.o an equiprobable quantization.

Proof Assunme a 1-dimensional grid with quantization intervals HI, ... , HN+1
separated by the weights 11)1, ... , WN. Due to the existence of a Liapunov
function, we know that MER will converge on average. We have that:

"< Awi >v= 0 =< Hi - H1i+ >v= p(Hi) + p(Hi+j), i = 1 ... , N, (9)

at convergence. If we substitute backwards the His in the equations, then we
observe that the latter all equal the same value. Now since by definition we
have that neuron i is activated when either Hi or Hi+j or both are activated,
the probability that neuron i is activated is simply: p(i) p(Hi) + p(Hi+I).
If we now substitute for the His, we obtain that: 1)(1) ... p(i) ... p(N),
and thus an equiprobable quantization. QED.

We now show that the grid cannot be folded at convergence (kinks).

Proposition 3: In the one-dimensional case, M ER is guaranteed to converge
on average to a. 1-dimensional grid without kinks.

Proof Assume the inverse that a 1-dimensional grid with at least one kink
is a stable solution. Assume that there is a kink at neuron i, hence, the
intervals Hi and Hi+i overlap and are located at the same side of i. This
means that neuron i will only get weight updates in the direction of both
overlapping intervals, and never in the opposite direction. This means that
neuron i will keel) on shifting until the overlap is reinoved. Hence, the kink
at neuron i is not a stable solution. QED.

Since kinks are the only topological defects of 1-dimensional grids, the lat-
ter two propositions also signify that. MER converges to a unique equiprob-
able quantization with p(1) ... p(i) .... p(N) = -L

N
Finally, it is noted that MER in the one-dimensional case resembles our

previously introduced Boundary Adaptation Rule (BAR) [15,16,17]. How-
ever, there is one crucial difference: BAR achieves an equiprobable quanti-
zation in terms of the quantization regions and M ER achieves this in terms
of the neurons themselves. Hence both rules are complementary.

CONVERGENCE- AND DYNAMICAL PROPERTIES

Up to now we have considered globally-ordered lattices to explain our rule.
What happens in case the lattice is tangled and V is quantized by possibly
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compare them on an equal basis. First we will use a fixed but small learning
rate 71. For MER we take 71 = 0.001 and for the Kohonen rule 71 = 0.015
so that. the variance on the weight vectors is of comparable magnitude at
convergence. (This is a compromise since slightly lower 71 values for the Ko-
honen rule lead to topological defects.) The following neighborhood function
is used for the Kohonen rule:

A(i, i*, t) = exp(- 27('i . )2 with or(t.) = t~exp(-2To ) (10)
2,(t)2  

'tillax

where ri and rj represent the lattice coordinates of i and i*, I the present
time step, t  4, 000, 000 the maximnum number of time steps, and o
the range spanned by the neighborhood function at t = 0; o00 = 5 . Due
to this neighborhood function, all neurons are updated at each time step,
albeit with a smaller value as time progresses. In case of MER, only 1, 2 or
4 neurons are updated per active hypercube, and several hypercubes may be
active at the same time.

The simulation results are shown in Figs. 4 and 5. We observe that the
dynamical behavior of M ER is completely different. The Kohonen rule first
leads to a contraction of the lattice (tue to the initially large range spanned
by the neighborhood function. The lattice rapidly untangles and becomes
fairly evenly distributed and then adapts in detail to the input p.d.f. In
case of MER, the lattice gradually adapts in detail to the input p.d.f. as it
becomes untangled. We (to not. observe a comparable initial contraction of
the lattice. Furthermore, we have that. several hypercubes (i.e. quantization
regions) are activated at. the sarne tline and that this number decreases as
the lattice converges to a globally-ordered one (Fig. 6). Notice that for the
Kohonen rule, only a single quantization region wins the competition at each
time step.

The Kohonen rule definitely is faster, however if we comnpare the suri of
all weight. update vector magnitudes performed in ',.. time steps, then the
picture is different,: the sum equals 4'181 for M Elk and 27555 for the Kohonen
rule. A fair comparison would be to shorten t

m...,.. for the Kohonen rule so
that it yields a weight update suim similar to M ER's (i.e. t ..... = 275, 000).
The results for the Kohonen rule are given in Fig. 7. However, we now
observe that, the lattice is twisted. Hence, the range of the neighborhood
function is too rapidly decrease(], given 71.

Finally, we will consider another type of input distribution. In the pre-
vious case the distribution was uniformn within a square, hence, the type of
solution found by both learning rules is the same. We will use a radial distri-
bution of input samples v = (r, 0) with 7 and 0 randomly and independently
chosen within the intervals [0,0.5) and [0,2wr). The resulting p.d.f. has a
radial distribution o( -. We will display the results for the converged lat-
tices (Fig. 8A,B) in terms of the average probabilities that the neurons are
updated over a period of 100, 000 iterations. The average probabilities are
represented as gray scales: black denotes zero probability and white denotes
tile maximum average probability found in both lattices (Fig. 8C,D). We
imnmediately observe that the Kohonen rule leads to a lattice which under-
samples the high probability region at the center (high update probability)
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and oversamples thIn low probability region away from ihe center (low III)-
date probability) (Fig. 8(), as expecteed. Since the input space is almost,
uninf orm ry foiI MER (Fig. 8D), we conclude that MER leads to an almost
equip ''obab jl i quaiiizai o.101)

Figure zI Evolution o a 24 x 24 lat~ltice witli a rect~allpilar t~opology as
a funiction, of" tile III case of die Kohionen mile wit~h Z,...... = 4,000,000.
The outer squares ouitline the unifornm input, p.d.f. The values given below
the• squrtl;c represent t~ime. Not~icec .hat. at. convergenice, Ohw weighlt, vectiors
sýt~d~ille int'o a 11ois-, st.at~e as ;I result, of" t~he vanished neighborhood fuinctioll
ýi 1ýd the fixe:d but small] hlearning rait,( 7j.

S .t->m,,... • - -.-.vrgy -z

''7

41

-MI

F iire 5: ',ohifion in cast of M tE ,. In hserve iiat, lHi w ghit, vhctors stabilize
ilbt-) ona mo fsavortblit the neifo•rlairti ((ftit p. Fif. T u e

W•e ha"(o iinhoduced a new unsup~ervised conmpetit, ive learningl rule forttopo~ogy-l'd or it p iiap s orat u a. on and vector q gteization. The rule, called
Alb .i elds in t equipron s ablt quansa iZailt on of tY ixilie , space. Itis lllorioo f e-
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ture is that it is able to achieve a globally-ordered map by performing
local weight updates only. Contrary to the Kohonen rule, we do not
need a, neighborhood function. Hence, MER is an even simpler rule than
Kohonen's: 1) we only need to update locally, hence only local neural com-
munications are needed, and 2) only one parameter, the learning rate, has to
be chosen. The effect, of the latter is much clearer understood than that of
the parameters needed in Kohonen's rule to specify the neighborhood func-
tion. Especially the choice of the rate at, which the range of the neighborhood
function decreases is often a critical element for convergence [6,11].

Y,,0

780

Figure 6: Number of active hypercubes (quantization regions) as a function
of time. Notice the initially large number of active hypercubes (up to 130!).

Figure 7: Evolution in case of the Kohonen rule with 1
m 275,000.

AA

Figure 8: Radial input, distribution. C onverged lattices obtained with the
Kohionen rule (A) and MER (B). Graphical rendition of the corresponding
average update probabilities for the Kohiorn i rule (C ) aiid MER (D).
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A Self-Organizing System for the Development of
Neural Network Parameter Estimators

M.T. Manry
Department of Electrical Engineering

University of Texas at Arlington
Arlington, Texas 76019

I. Introduction

The design an optimal neural network estimator from training data is
difficult because (1) the required complexity of the estimation network is unknown,
(2) existing training algorithms for multilayer perceptrons (MLPs) are inefficient,
in terms of training time and use of free parameters, (3) existing bounds on neural
network estimation error assume noiseless inputs and are not practical to calculate,
(4) there is no generally accepted procedure for finding the best subset of input
features to be used in optimal estimation, and (5) a method for automatically
developing optimal estimators from training data is not available.

In this paper, we describe a methodology for attacking these problems.
In section II, we describe three separate processing blocks which attempt to solve
problems (1), (2), and (3). In section III, these blocks are then assembled into
larger compound systems or blocks which attempt to solve the remaining
problems. Examples of multilayer perceptron (MLP) estimators, designed using
the proposed system, are given in section IV.

II. Algorithmic Building Blocks

Building block algorithms have been developed for (1) determining an
estimator's required complexity or size from training data, (2) efficient training,
and (3) calculation of Cramer Rao lower bounds on estimation variance from
training data and a signal model. These blocks are discussed in the remainder of
this section.

A. Complexity Estimation

Several facts make complexity estimation possible and worthwhile; (1)
training of a nearest neighbor estimator (NNE) is almost an order of magnitude
faster than MLP training algorithms, (2) once trained, the MLP can be applied to
data one or more orders of magnitude faster than the NNE, (3) an MLP can
closely approximate the performance of a NNE if it can memorize the NNE's

0-7803-2739-X/95 $4.00 © 1995 IEEE
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cluster vectors, and (4) a one-output MLP can memorize as many patterns as it has
free parameters [1] (its complexity). This result is a great improvement over the
much lower bounds, related to the number of hidden units, that are given in [2].

As a first step in the complexity estimation algorithm, we iteratively train
an NNE through clustering of the input vectors. These clusters, and their
associated outputs, constitute a reduced-size training set similar to that described
in [3]. In [3], however, the input vectors are required to be noiseless, useless
inputs are not rejected, and there is no theoretical relationship between number of
chosen patterns and MLP network size. Second, the required complexity of the
neural net to memorize the clusters is determined. As the number of clusters
increases, and the performance of the NNE improves, the predicted complexity of
the MLP, required to attain the error performance of the NNE, also increases.
Picking a suggested network configuration from complexity estimation is one or
more orders of magnitude faster than actually training multiple MLPs. Details of
our algorithm can be found in [4].

B. Efficient Training of Estimators

1. Moftivlation

Current MLP training algorithms, such as output weight optimization
(OWO) [5], conjugate gradient (CG) training [6], and backpropagation (BP) are
not capable of training the MLP up to its maximum potential in a reasonable
amount of time [1]. Consider a MLP with structure 8-36-1 (8 inputs, 36 hidden
units, and I output), which is trained to memorize varying numbers of random
patterns, using BP, OWO, CG, and a method in which an 8-variable 3-rd degree
polynomial or Volterra filter is trained and then efficiently mapped to the
sigmoidal MLP. This
mapping procedure first
maps the Volterra filter to
a polynomial network in
which most of the units 0.2

have third degree
polynomial activations of 015-

the form ax2 + b x.
where x denotes the net 0.,
function. Second, each
polynomial unit is 0 P
replaced by a single
sigmoidal unit, with some CG
changes to the weights of 5 ... .. ,5 0

course. This second step Number of patterns

is possible because the Figure 1. Training Error versus Number of
ratio S"(x)/S'"(xf), of the Patterns for Four Training Algorithms
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sigmoid's second to third derivatives, is continuously variable between -oo and
+ oo. In Fig. 1, the networks' mean square training errors are plotted versus the
number of training patterns used. Here, OWO and CG perform better than BP but
lag far behind the mapping method, which leads to very parsimonious networks.
Clearly, existing training algorithms can be improved if they can be given the
capability of precisely adjusting S"(x)/S" 'ft).

2. Training Algorithm

Motivated by the previous example, our basic training approach consists
of (1) training a polynomial-activation MLP via OWO [5], (2) converting it to a
sigmoidal-activation MLP, and then (3) training the sigmoidal-activation MLP via
OWO. The conversion to sigmoid activations is done because the sigmoid function
is bounded, sigmoid activations can mimic polynomial activations of degree much
higher than three, and the performance of the converted network is theoretically
as good as or better than that of the polynomial network. Consider the polynomial
activation function,

P(x) = a x 2 + (1-a).x 3  (1)

where x denotes the net function. We want to approximate a polynomial unit,
having activation P(x), by a sigmoid-activation sub-net having the activation

PS(x) = d + wb x + w.S(c + wox) (2)

This sub-net is shown in Fig. 2.
Let m. and a. c d

respectively denote the mean
and standard deviation of the X w, S O P, (X)
net function x. Let y. and oy Y
respectively denote the mean
and the desired standard
deviation of the sigmoid's net Figure 2. Sigmoidal Equivalent to 3rd-Degree Unit
function y. The weight wi is
found from wi = ory/ox. Then
y. = wimx+c. Equating P"(x)/P.'(x) to P."(x)/P.'"(x) at x = m., we get

a ~3S11 (y)a - -3m + - (3)
1-a w:S"I (Y)

We can solve for y. by the Newton Raphson method. Then c can be obtained from
c = y0 - Wimx. The remaining weights and threshold are easily found.
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organizing estimator.

A. Signal Modelling

It is possible to find a statistical signal models from training data, given
that the mapping or estimator is injective and that the inputs and outputs have the
appropriate statistical variation [8]. A mapping is injective if only one input vector
maps to each possible output vector. Given the training patterns we want to find
the signal component model and noise pdf. We make the following assumptions.
(Al) The exact signal model is xP = sp + np.
(A2) The elements Op(k) of 0, are statistically independent.
(A3) The noise vector n has independent elements with a jointly Gaussian pdf.
(A4) An expression exists for s in terms of 0.

The signal model of (Al) can be rewritten as x, = s1p + n', where sp'
and iiP' denote approximations to sp and nP respectively. The calculation of sp' and
np' are described separately. Assume that the nth element of the approximate
model sp' is represented by

L
/s '(n) a -a pTk (5)

k=I

where a, denotes the coefficient of Tp(k) in the approximation to s(n), and where
Tp(k) is the kth basis function calculated from the desired pth output vector Op.
Tp(k) can represent a multinomial function of parameter vector 0 in a functional
link network, or a hidden unit output in a MLP. In practice, because of the
capabilities of the MLP for approximating derivatives [11,12], a neural network
would be the first choice for sp'. The error between xp(n) and its model is
measured as

E (n) E I [x(n) - s(n)]2
E n = p=I

The model is determined from the noisy data by setting the partial derivativeN as;(n)

En(n) = 2 n)_s'(n)] + (n)

aa s Fa- ý

N a
ek 2 3t n(n) Sp (n)

equal to zero. Using the facts that

asp (n) 2
Oa,, T (k), E[nf(n)nq(n)] = ab(p-q)

the mean-square of the noise term e,, is evaluated as
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N4 N N,

Efe& =2 E[n p(n)n q(n)]T(jk)Tq(k)
pq=1

4o 2 
Nu 4UE. E.k)

= j' P~ S Pk) N,N,= p=a

where ED(k) is the average energy of the kth basis function. Note that the mean-
square error goes to zero in the limit as the number of training vectors increases.

Given a model si' for the signal component, we model the mean vector

and covariance matrices of the noise component as

N

= n (x -K-nt D,, - IS ,
P=l

C/ / / T

N, p pp=!

Next, a reasonable pdf for the parameter vector 0 is determined. We
determine an approximate Gaussian pdf for 0 by estimating its mean vector and
covanance matrix from the desired outputs, OP, in the training data file. Since
equation (5) represents a MLP or Volterra filter, our Signal Modelling block uses
the complexity estimator and efficient training.

B. Far~ e Selarlio

In theory, estimation performance improves as the size of the observation
vector a increases. In practice however, larger observation vectors are not
desirable because of (1) the longer training times required for the estimation
algorithm, (2) the increased time necessary to apply the estimator to data, (3)
instabilities or poor performance of the estimator because of linear dependence of
elements in the observation vector, and (4) increased expense required when more
observations are taken (extra weight of the sensors, extra money required for
development). Therefore, it is useful perform feature selection, which is the
process of finding useful subsets of the available observation vector % which lead
to good estimator performance.

A methodology for comparing inputs, in order to determine their
optimality relative to each other, is given in [7,8]. Feature selection requires three
blocks. These include the signal modelling and bound calculation blocks. In
addition we need a conventional subsetting block. The subsetting block will merely
add features to the subset which most reduce a weighted sum of the MAP bounds
on parameter estimation error variance. Features at the top of the list are the most
imrortant ones.
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C. Self-Organizing Estimator

The Self-Organizing Estimator that we have developed requires three
blocks. These are feature selection to find a good feature subset, complexity
estimation to determine which size MLPs to use in signal modelling and in the
final estimator, and finally efficient training. The feature selection calculates the
Cramer-Rao MAP lower bounds on estimation error variance, which can be
summed to form a lower bound on the estimator's training error. Our efficient
training algorithm halts when the training error approaches the bound.

IV. Examples

As a first example, we chose the task of inverting the surface scattering
parameters from an inhomogeneous 0.32

layer above a homogeneous half- 0.31

space, where both interfaces are 0.3

randomly rough. The parameters to be 0.29

inverted are the effective permittivity 0.27

of the surface e, the normalized rms 0.21

height ko (upper surface kol, lower 0.25

surface ka 2), the normalized surface 0.24

correlation length kL (upper surface 0.23-
0.22

kL,, lower surface kL2), where k is a 20 ,0 60 80 100

the wavenumber, the optical depth -r,

and single scattering albedo w of an Figure 3. Training Results for Example 1.
inhomogeneous irregular layer above
a homogeneous half space from backscattering measurements [13,14].

Table 1. Bounds and Training MSE for Example 1.

Par. e ka, ka2  kL1  kL2  r

Bound 9.85 x 8.52 x 2.43 x 4.02 x 1.97 x 8.85 x 6.24
10-3 10-1 10-1 105 10-2 10-3 x 10-7

MSE 1.125 x 8.7 x 1.65 x 1.08 x 2.19 x 2.48 x 8.01
10 .2 10- 10-1 10-4 10.2 10-2 x 10-8

The training data for the MLP network contained 1768 patterns. The
inputs consisted of eight theoretical values of backscattering coefficient parameters
e" at V and H polarizations and four incident angles (100, 300, 500, 700). The
outputs were the corresponding values of e, kau, kao, kL,, kL2 , r, and wo, which
had a jointly uniform probability density. The self-organizing estimator (1) chose
a signal modeling MLP with the structure 7-24-12-8, (2) generated the seven
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bounds on the estimation error variances shown in Table 1, (3) chose the MLP
structure 8-25-7 for the estimation MLP, and (4) had the training errors shown in
Fig. 3 and Table 1. In the figure, training errors are plotted for the new procedure
Tor ac. = 1.0 and for a sigmoid network initialized with random initial weights.
The discontinuity in the new procedure's error curve dissapears when ay
approaches 0, but training is difficult for that case. From the table, most of the
parameters' training errors are slightly greater than the corresponding bounds, as
one would erpect.

The second data set has 16 inputs and 3 outputs and represents the
training set for inversion of surface 1.6

permittivity c, the normalized surface
ims roughness hoa, and the surface
correlation length kL found in 1.2 sP

backscattering models from randomly
rouch dielectric surfaces [15,16]. In
contrast to the first data set, no .
volume scattering related parameters o.M

cre considered. The first eight of the 00.4

si'týen inputs represent the simulated o 20 14 1 80 100

backsuattering coefficient measured at
10, 30, 50 and 70 degrees at both Figure 4, Training Results for Example 2.
vertical and horizontal polarizations.
The remaining eight are various combinations of ratios of the original eight values.
Tlres ratios correspond to those used in several empirical retrieval algorithms.

The training data for the MLP network contained 10,000 patterns. The
self-organizing estimator (1) chose a signal modeling MLP with the structure 3-15-
8-16, (2) generated the three bounds on the estimation error variances shown in
Table 2, (3) chose the MLLP structure 16-40-3 for the estimation MLP, and (4) had
tlh traininm errors shown in Fig. 4. and Table 2. In the figure, training errors are
plot•-ed. for the new procedure for c, = 1.0 and for sigmoid networks initialized
vwitsh randon•o initial weights. The use of the polynomial network gave no initial
arvamtage for this data set, unlike in the first example. From the table, all of the
p m r•ne'os' traim'rn eru-s are greater than the corresponding bounds, as one
vno>ud p'-'- . Clerrlv, the MLP has oroblems estimating !a.

'o7: 2. =:u 7T EiTrnin PA11SS for-hr'l 2.

Pa1aml-,e k [ kL

3cu0  232 10.6 5.77 T 10' [ 6.53 x 10'

IS 4.68 i 10-L 7.34 x 1i0-'
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V. Conclusions

In this paper, we have descibed a self-organizing system for generating
parameter estimation networks. Given a set of training data, the system produces
a statistical signal model for the input patterns, finds bounds on the training error
for each desired output, determines a good network structure using a complexity
estimation algorithm, and trains the estimator. The system was demonstrated on
two remote sensing data sets. In both cases, most of the final estimation network's
outputs had training errors greater than the corresponding bounds.

Much work remains before the system described here can be made widely
applicable. The theory behind the complexity estimation algorithm needs to be
fully developed. The efficient training procedure is not always better than other
available training approaches, and must be improved. The extension of the bounds
to the case where the desired mapping is non-injective will be necessary before the
system can be applied to prediction and control problems.

Acknowledgements

This work was funded by NASA under grant NAGW-3091, by the NSF under
grant IRI-9216545, by EPRI under grant RP 8030-09, and by the Advanced
Technology Program of the state of Texas.

V1. References

[1] A. Gopalakrishnan, X. Jiang, M-S Chen, and M.T. Manry, "Constructive
Proof of Efficient Pattern storage in the Multilayer Perceptron," Conference
Record of the Twenty-Seventh Annual Asilomar Conference on Signals, Systems,
and Computers, Nov. 1993.

[2] M.A. Sartori and P.J. Antsaklis, "A Simple Method to Derive Bounds on the
Size and to Train Multilayer Neural Networks," IEEE Transactions on Neural
Networks, vol. 2, no. 4, July 1991, pp. 467-471.

[3] M. Plutowski and H. White, "Selecting Concise Training Sets from Clean
Data," IEEE Trans. on Neural Networks, vol. 4, no. 2, March 1993, pp. 305-318.

[4] K. Kim and M.T. Manry, "Complexity Estimation for the Multilayer
Perceptron", submitted to The 29th Asilomar Conference on Signals, Systems, and
Computers.

[5] M.T. Manry, S.J. Apollo, L.S. Allen, W.D. Lyle, W. Gong, M.S. Dawson,
and A.K. Fung, "Fast Training of Neural Networks for Remote Sensing," Remote
Sensing Reviews, vol. 9, pp. 77-96, 1994.

113



[6] J.P. Fitch, S.K. Lehman, F.U. Dowla, S.Y. Lu, E.M. Johansson, and D.M.

Goodman, "Ship Wake-Detection Procedure Using Conjugate Gradient Trained

Artificial Neural Networks," IEEE Trans. on Geoscience and Remote Sensing,

Vol. 29, No. 5, Sept 1991, pp. 718-726.

[7] Q. Yu, S.J. Apollo, and M.T. Manry, "MAP Estimation and the Multilayer

Perceptron," Proceedings of the 1993 IEEE Workshop on Neural Networks for

Sign•al Processing, Linthicum Heights, Maryland, Sept. 6-9, 1993, pp. 30-39.

[8] W. Liang, M.T. Manry, Q. Yu, S.J. Apollo, M.S. Dawson, and A.K. Fung,

"Bounding the Performance of Neural Network Estimators, Given Only a Set of

Training Data," Conference Record of the Twenty-Eighth Annual Asilomar

Conference on Signals, Systems, and Computers, vol. 2, Nov. 1994, pp. 9 12 -9 1 6 .

[9] W. Liang, M.T. Manry, S.J. Apollo, M.S. Dawson, and A.K. Fung,

"Stochastic Cramer Rao Bounds for Non-Gaussian Signals and Parameters,"
accepted by ICASSP-95, May 1995.

[10] H. L. Van Trees, Detection, Estimation, and Modulation Theory - Part I,

New York, NY: John Wiley and Sons, 1968.

[i1] K. Hornik, M. Stinchcombe, and H. White, "Universal Approximation of an

Unzklnown Mapping and its Derivatives Using Multilayer Feedforward Networks,"

N)eural Networks, Vol. 3, 1990, pp. 551-560.

[12] Y. Ito, "Approximations of Differentiable Functions and Their Derivatives

on Compact Sets by Neural Networks," Math. Scientist, Vol. 18, 1993, pp. 11-19.

[13] M.S. Dawson, A.K. Fung and M.T. Manry, "Surface parameter retrieval

using fast learning neural networks," Remote Sensing Reviews, 1993, Vol. 7(1),

pp. 1-10.

[14] M.S. Dawson, J. Olvera, A.X. Fung, M.T. Manry, "Inversion of surface

parameters using fast learning neural networks," Proc. of IGARSS'92, Houston,

Texas, May 1992, vol. II, pp 910-912.

[15] Fung, A.K., Z. Li, and K.S. Chen, "Backscattering from a Randomly Rough

Die!ectric Surface," IEEE Trans. Geo. and Remote Sensing, Vol. 30, no. 2,
March 1992.

[16] Fung, A.K., Microwave Scattering aond Emission Models and Their
Applications, Arctec House, 1994.

114



Recognition of Oscillatory Signals
Using a Neural Network Oscillator

Masakazu Matsugu
Imaging Research Center, Canon Inc., Shlimomaruko, Ohita-ku, Tokyo,
146, Japan
Email: matsg(•cam.canon.co.jp, Fax: +81(3)3757-8841

Chi-Sang Poon
Harvard-MIT Division of Health Sciences and Technology, Rm2OA-126,
Massachusetts Institute of Technology., Cambridge, MA 02139, USA

Email: cpooni'cybernet.mit.edu, Tcl: (617)258-5405, Fax: (617)253-
2514

Abstract

We studied a possible role of a simple neural network oscillator as

a neuronal classification unit of oscillatory signals. The neural oscilla-

tor, composed of two mutually inhibiting types of neuron with adaptive

property ill one neuron, is fed by periodic inputs of varying amplitudes,
frequencies and phases. Using a performance measure defined in the

frequency domain, we showed that the neural oscillator was able to ac-

curately recognize the spatioteinporal content of the oscillatory input

without any information loss. The simulation results demonstrated that

such a neural oscillator may exhibit marked changes in its spatiotemporal

pattern (e.g., trajectories of neuronal activities) in response to changes in
the oscillatory input. Under a strong entrainment condition, the network

could differentiate small changes in the frequency of in-phase inputs by

displaying profound changes in both the waveforms and relative phases

of the neuronal activities. Similarly, changes in the phase relationship
of the oscillatory inputs are manifested as significant changes in the am-

plitude of neuronal activities. In this manner, the frequency, amplitude

and phase of the oscillatory inputs may be represented (and possibly

classified) in terms of the corresponding spatiotemporal pattern of the
neural oscillator. The results suggest a plausible mechanism for the clas-

sification of oscillatory signals in biological neurons without the need for
any quantitative measurements, and the feasibility of such a simple neu-

ral network architecture as a building block for oscillatory information

processing.

1 Introduction

Stroage, retrieval and recognition of spatiotemp oral patterns in oscilla-

tory neural networks have been studied extensively under the Hebbian

learning scheme (Amit et al., 1990; Wang et al., 1990; Schomaker, 1992;

0-7803-2739-X/95 $4.00 © 1995 IEEE
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Poon, 1993; Matsugu & Yuille, 1994), the extentions of backpropagation
scheme (Williams & Zipser, 1989; Doya & Yoshizawa, 1989 ; Rowat &
Selverston, 1991; Toomarian & Barhen, 1992 ; Lin et al., 1992; Sun et
al., 1992; Simard & Le Cun, 1992), the variational scheme (Pearhmutter,
1989; Bersini et al., 1994; Sotelino et al., 1994), and generalized matched
filtering scheme (Hecht-Nielsen, 1991).

However, it is still largely unclear how biological systems effectively
process oscillatory signals, and how information encoded in the spa-
tiotemporal activities of neurons may be decoded in the brain.

It has been suggested that a periodically driven neural oscillator is
functionally equivalent to a heteroassociative memory in that the unique
spatiotemporal activity pattern induced by the periodic source represents
a form of information storage (Matsugu & Poon, 1993).

In this paper, we propose another useful function of neural network
oscillators: as a classifier of unknown periodic inputs (e.g., detecting fre-
quency, phase, and amplitude), a function that cannot be subserved by
conventional (non-oscillatory) neural networks. The emergent neurody-
namics in response to sinusoidal inputs revealed that the trajectory in
the state space of neuronal activities could serve as an indicator of spa-
tiotemporal information content (i.e., frequency, phase, and amplitude).
We propose a performance measure that approximately gives the infor-
mation loss during the classification process. The results demonstrate
the feasibility of a novel scheme for oscillatory pattern recognition using
oscillatory neural networks.

2 The Network Model

A minimal network model of physiologically plausible rhythmogenesis
(Fig. 1) is composed of two mutually inhibiting neurons: I and E, (Duf-
fin, 1991). A virtual interneuron F, which provides negative recurrent
feedback for the I neuron, accounts for the adaptation properties of the
I neuron which lead to its decrementing activity during a burst (Mat-
suoka, 1985). The inputs driving the I and E neurons originate from a
source D.

The feedback neuron F can simulate the adaptation effect in neuron I
without causing self-induced oscillations provided the following inequal-
ity is met (Matsuoka, 1985):

(TF - T1,E) 2 > 4TFTI,ECF

where TF is the time constant for neuron F (1.5 s), TIE is the time
constant for the I and E neurons (0.08 s) and CF is the connection
strength from neuron F to neuron L

The equation describing the activity of any neuron i in the model is
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(Dumbn, 1991):

d..1Ti-dx- + xi = Ri + ECijg(xj - Hi) + Si (1)

where xi is the current activity of the ith neuron; Ri is its resting activity
(-10 for the I and E neurons, 0 for neuron F); Hi is its threshold (0 for
all neurons); Cij is the strength of the connection from the jth to the ith

nieuIron; and g(z) is a nonlinear function (e.g., g(z) = maax(0, z)) used to
model the activation threshold for the model neurons.

For simplicity, the inputs to oscillator neurons I and E from driving
source D (denoted SI and SE, respectively) are assumed to ibe of the
formn:

S1,E = AI,E sin( 2 7rfEt + OkE) + DCI,E (2)

where DC is the steady component and A, f, 0 are respectively the
amplitude, frequency and phase angle of the sinusoidal component of
the signal to the I or E neurons (with corresponding subscripts).

Sinusoidal inputs to the I and E neurons are said to be in-phase or
anti-phase if f, = fE and 01 - OE = 0 or 180 deg respectively (Cohen
et al., 1992; Cyiiibalyuk et al., 1994).

3 Classification of spatiotemporal contents

In order to gain some insight about the ability of the simple neuronal

classifier, we propose here a provisional measure of its discriminatory
power, given the data set of input and output (i.e., induced activities of
neurons) patterns.

To be specific and for practical reasons, we will measure the spa-
tioteml)oral contents of total neuronal activities and oscillatory inputs
given by the state vectors Qj,,, Qott respectively,

Qi, .= 'u (b7 l'',bou bHout )i7q i ...... = W 17 I...' b2 .... , .. .. . , ) w,

where i = ,V * Al, and N is the number of coml)onent neurons (mutually

inhibitory neurons; i7 = 2 in a minimal model), Al! is the number of bins,
and b'", by"' denote frequency bins, for inputs and outputs respectively,

in the frequency domain partitioned from (mi - 1)S to m6 with in =
[(i - 1)/N] + 1 ([.i] desigiiates taking the integer part of x),

irlout ini utuoft

bi = (m )5 (f ) df, (3)

where G" '(f) represents the spectrum (e.g., amplitude, phase spec-

trum, or else) of the input and outlut at the j th neuron (j = [(i -
1)/A1] + 1), respectively.
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'We define a state vector, (57Ot", bu" ' . o, T which is. for
activity of neurons (i.e., mutually inhibitory neuroins, I and E), approx-
hintei tiv unique to the spatiotemporal contents of the neural network.
Thus, with appropriate dimensionality -11. it can be useti to measure the
volum11e of oscillator patterns realized by the system. The performance
Measure C1 (hiatsiigu ,k Poon, 1993) is then.

C', =

S. Qo,,, . (4)= . .. ,.Q,. db, ... db" 4

where V,, 1 0,t are the volume for inlput and output realizations re-
spectivelY. defined in the multidinensionai hyperspace that specifies the
state vector Q.

It shI iould Ibe iioteld t lia each volume is measured only for stable oscil-
latio0 patterns. Il practice, it is very difficult to perform the integration

to obtain the estiilate of volimije. Insteadi we al)proxihiiate it by first
reiMliepi1g each state vector into a lattice space, which is simply given

ti) discretizillg the original hyl•erspace in units of certain normalization
factor. L. That is. we divide each real valued component bi by L and

teke a nearest integer value, which yields a lattice point. Thus in the lat-

tice space, state vectors (B1 .2..... B,, ) are given by Bi [bi /L]. where
de (he•otes the nearest initeger part of 7. Obviously. the larger L conies

vwith less accurate estimate of the volmne occupiled by given realizations.

The lumbier of remapped points in the state space gives a rough
Mileasuire of total diffirent realizations in the system's response. Thus

the peferfilanee miieasure. the ratio of iliIlt and output volumes in the
state space of spectrum domain, is intemlded to give a loose measure of
(1iscrilnmiiietiom iower for the oscillatory neural system by comparing the
11111111w)r of difl'remir po.ints for input signals and outpitl activities.

4 esiilts

4.1 EP ergent neurodynamics in a network oscillator

U sing a sillimsoidally varying driving source D (-4 =, A0., = 50) with
the drives to the I and E neurons in-phase (r,' - 061 = 0; f = fE),

amld DC1 /DC' = 0.8(DC1 = 50), we examined the oscillation patterns
of the mod0el at varying sinusoidal driving frequencies. The patterns of

osit ithx, ei are displayed as limit-cycle trajectories by plotting E lleliroln

activity verslus I mmeironi activity ili the phase plane (Fig. 2). For driving

fe itueties from 0.15 to 2.0 Hz. each neuron of the model was totally

(1:1) eeitrained to the driving frequency but the limit-cycle trajectories

exviibited a progressive tremisformation with drastic changes in character

as the driving frequency was varied (Fig. 2 (a)). At driving frequencies
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between 1.5 and 2.0 Hz (i.e., approximately 5 times the spontaneous
frequency) the limit-cycle trajectory was a simple loop with the major
and minor axes pointing in the horizontal and vertical directions, re-
spectively, indicating that the I and E neurons were nearly 90 deg out
of phase (i.e., somewhat between in-phase and anti-phase). Thus, in
the in-phase input configuration the I and E neurons were entrained to
the periodic input with differing phase shifts. As the driving frequency
was decreased toward the spontaneous frequency, the limit-cycle trajec-
tory deformed continuously until, at a frequency of -1.2 Hz, a cusp was
formed which gradually turned into a twist when the driving frequency
was decreased to 0.8 Hz (i.e., approximately 2 times the spontaneous
frequency).

At lower driving frequencies, the limit-cycle trajectory again de-
formed continually until at a freequency of -0.43 Hz (i.e., near the spon-
taneous frequency) the twist disappeared and a simple loop returned.
As shown in Fig. 2 (a) at f < 0.5 Hz the major axis of the loop was
tilting to the left indicating that the oscillations of the I and E neurons
were anti-phase, unlike the in-phase input. As the driving frequency was
decreased still further, a cusp re-appeared at -0.33 Hz and was fully de-
veloped as the driving frequency fell below the spontaneous frequency.
The amplitude of the entrained oscillation remained relatively stable at
low driving frequencies. However, at driving frequencies above -1.0 Hz
the amplitude decreased progressively with increasing drive frequency.

For stronger periodic inputs, the entrained rhythm was less suscep-
tible to magnitude attenuation and/or harmonic and phase distortions

(phase angle between I and E neuron activity < 180 deg) when the inputs
were anti-phase than when they were in-phase.

Using the same sinusoidally varying driving source D except that the
inputs to the I and E neurons were anti-phase (01 -4'E = 180deg),
we examined the oscillation patterns of the model at varying sinusoidal
driving frequencies. Over the same range of driving frequencies (0.15
to 2.0 Hz) the amplitude of the entrained oscillation was significantly
greater than that resulting frlom the in-phase inputs.

The maximum response occurred at a driving frequency of -0.6 Hz
and the response decreased rapidly with increasing departure of the driv-
ing frequency from the optimal frequency. At all driving frequencies
the limit-cycle trajectory remained relatively stable without appreciable
changes in character (i.e., appearance of twists and cusps and changes
in phase angles between the I and E neuron activities) as observed for
the in-phase inputs (Fig. 2 (b)).

4.2 Estimation of performance measure

The proposed perfomance measure for decoding of oscillatory signals
(eq. 4) is dependent on the dimensionality of the hyperspace which is
determined by the lattice size and the width of the partitioned freequency
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ranlge.

To investigate the effect of the (Ilu iiiensionali ty oil the residitm esti-

lliat I. we calcultar ci the performance measure using varying values of
L and i. A limited frequeiicy range (from 0.15 to 2.0 Hz) of nii-lphase
Inpu ts with sufhicieiit amiplitude was used to ensure 1:1 entrainmient of

till oscillator Olt jplt.

Figure 3 shows thle perf~ormiance mneasulre estimate(I from tihe amjpli-

tulde spectra for vary, ing lattice sizes. L, (6: 0.2 Hz, unbroken linle: 0.4
liz. lbrmkeli linec). It indicates anl asymptotic performiance mecasure of

approximiat ely omie(. Tw~o points should be iiotetl. First. the information

coiltellt of the iiijpmmt sigrmmll is reflected ill tihe ouitpuit spatioteniporal pait-

t Orll. Second. the plerformnance measure is not criti( ally (lelpenident oil t

or the lattice size nised inl the simu 1 lationl.
However, it wais found that if time amlplitulde of tihe ill1)mit siginal is

less, than a cert aiii level. (quialit atively dlifferenit behaviors emnerge: time

nietwork ilemirolis oscillate with anl illtermnediate frequency betweeni the
imlllilt frecqiemicv amid the initrinisic frequency. If tlie lilp 11 amptlnllitud~e or

complhiiig strengt)hs to timeilililits are too simmall Compiiaredl with thileitrinsic

(lsclltll (i.e.. 5j1 olt lileols oscillation~ under DC inllits), time frequenicy
conlt ents of thei resmiltiiig osciilatioli would( lbe very simiilar to tile initrinlsic

oiles. Ill thlis case. regardless (If anly clmaiiges Ini the inlput, tile (iltillit wvill

reollaili close toi the lintriiisic oscillationl aii(ii[tie plerformlanice mneasure as

derimied iii Section 3 will be quilte different fromm that, resulting from the
"Ysvlemn withi st romig illil~lts.

Oh o islv for thnllt, at er case, thme est immatedl llefoi'iiilicf imeasu re will
hec fl11p less' tliami lillity.

Tihe~l ir plmrll(Is of' this study was toI explore the ilossibihity of uis-
in1; a il 511lplu ililirll iietwork oiscillator to recognize and classify periodic
signal>. Despite thle simmqlicitY of the iietwork architectuire, tile resultimig

p erforuisnec mlewaslirl (Fig. 3) applrolachied uliitv for sinlll lattice size
S1133 estmilg the lpossil nlitv of classifying (oscillat ory pat terns Without sig-

111 ( ilt A1 Ifiirmitr innl loss evenl with a shmliple oscillatory lienral nletwork.

Th preeil stnldv suggests a novel schemle of classifying oscillatory
-1'11(1' thait illigIlt he eillllovedl ill1 biological lltilal iietw(Irks Žand( mlay

Is be 11>efill for simi11lar siglial jprotessilig, tasks withi artificlial nleural

71 etioiks.
01i.resulr> showe'd that anti-phaseimllpIlts genlerally result eihill stroiig ei

1ii n1 i ' stihllie olitfots than ill-lplase iipljit's vvitli simila~r driving Coll-

diti1111]>Thiis behilvi~lo cami be ilitititively deduhced by coiisidering- that
the I" (11115t-lllltagilglist[ hpnt t 'ii of allmti-phlase imlilats is iiitrillsiclllly iiioie
I(gcjilnlille w-ith iietwork oIscillaltionm ill reciprically imllillbitinig lelillimls.

1n~ is si 'est byli pi fet that time critical ampillituide hor en1traimnent
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is lower for anti-phase inputs than for in-p1hase inputs (Matsugu, Duffin,
and Poon, 1995).

The entrained oscillations induced by periodic inputs with varying
informnation contents (i.e., frequencies and phase relationships) exhibited
a wide variety of emergent neural activities (Fig. 2). characterized by
dramatic deformnations of output trajectories resulting in mnarked changes
in the frequency contents of the output.

Ill the present neural oscillator model, the region of highest sensitivity
(where profound changes in the trajectory occur) is centered around 1.0
Hz for oscillatory in-phase inputs (i.e., a frequency range from 0.7 Hz
to 1.2 Hz). By appropriate scaling of the network time constants and
connectivities, one may move this active region to anywhere within the
spatiotemporal hyperspace.

It is interesting to note that the amplitude of the entrained oscillation
inay serve as an indicator of the input frequency as well as the phase
relationship of the oscillatory input to individual neurons.

Similarly, the presently denlonstrated complex modulations of the
entrained oscillation waveform by varying frequency contents of the in-
put may be useful for certain oscillatory infornmation coding/decoding
tasks. Such dynamnic transformation of changes in oscillatory pattern of
the input into changes in output trajectories may suggest another po-
tential use of the oscillatory unit in the generation of complex motor

patterns in locomotory or kinematic systems, in contrast to pirevious
work (Ermnentrout & IKoppel, 1994) which focused on obtaining a fixed
desired phase difference.

It is also tempting to combine the p)resent oscillatory unit with a neu-
ral system that could classify( distinct trajectory patterns (Sotelino et al.,
1994; Still et al., 1992; Hecht-Nielsen., 1991) so that the composite sys-
tem would recognize the temploral information content of the oscillatory
inputs. Another way of constructing a similar system is to use a group
of such oscillatory units, each being tuned to differing frequency regions
of interest (where trajectories deforin maximally in response to changes
in input frequencies or phases) in the spatiotemporal hyperspace so that
tie population dynamics of the unit oscillators would encode certain
features of the telil)oral input patterns, somewhat like those in popu-
lation coding schenies in the mnotor cortex (see for example, Lukashin
&- Georgopoulos, 1994; Sanger, 1994). In this regard, the present study
suggests that a wide spectruln of trajectories may be realized by a small
number of neuronal groups which are excited by inputs with differing
spatiotemnporal patterns.

A possible future direction of oscillatory l)attern classification based
upon such neurodynamics properties is to explore the abrupt transition
between distinct entrainment conditions (i.e., from n : in to n' : In'
phase-locking mode) in response to changes in the inl)ut. The idea is
to construct a system comn)osed of neuronal oscillators like the one in
Fig. 1, but having different resonance structures (e.g., different structure
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of Arnold tongues5) where each phase-locking zone would corresp~ond to
different inpuit categoriels.
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Fig. 1 The oscillatory network model. I and E denote
mutually inhibiting neurons, 1) Is the oscillatory source,

F designates a virtual neuron which accounts for
adaptation of I neuron.
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(a) In-phase inputs (b) Anti-phase inputs
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Fig. 2 The phase trajectories of the activities of I (abscissa) and E (ordinate)
neurons. (a) The trajectories corresponding to in-phase Inputs vary
significantly with input frequncy. (b) For anti-phase Inputs, there is no
appreciable change in the trajectory.
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Fig. 3 The estimated performance measure of the model network under
in-phase Inputs with entrainment condition. With decreasing
lattice size (see section 4.2), the measure approaches to a unit
value. The result suggests that the network could recognize the
oscillatory signals without critical Information loss.
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Abstract - The concept of classification using principal features is
presented. The principal features defined in this paper are analo-
gous to principal components in statistics and linear algebra. Neu-
ral network training can be done by sequential identification of prin-
cipal features and corresponding pruning of the training data. Two
neural network simplification algorithms, lossless and lossy simpli-
fications, make the the classifier design more efficient. The design
procedure is compared with other classifier design algorithms.

1 INTRODUCTION

Principal Feature Classification is based on a sequential procedure for find-
ing principal features. This is analogous to a method for sequentially finding
principal-component basis vectors. One can first find the principal-component
vector which provides the best single vector for use in least-squares approx-
imation of the set of training vectors. Then one removes the contribution
of this principal component from each training vector to force a modified
("pruned") set of training data. The procedure is then repeated to obtain
the second-best principal component and so on, from the sequentially pruned
training data.

Successive determination of principal features and the associated, succes-
sive pruning of the training data are naturally different than the analogous
steps for principal components because the criterion, namely improvement in
classification performance, is different.

In each stage, motivated by a multiple-Gaussian-component model for
the probability density of a vector observation from any class, linear and
nonlinear discriminant analysis is applied to find current principal features.
The training vectors which are sufficiently well classified using these features
are pruned. In the next stage, the design again applies linear and nonlinear
discriminant analysis to the residual, unclassified training data set to find
new features until the training vectors are classified at the target level of
performance, which is chosen to permit good generalization to the test data.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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Example 1. We use the two classes of data in Figure 1 (a) to show
the procedure of finding principal features. The design starts by first finding
two hyperplanes in the input space associated with the first principal feature

and the first hidden node. Fisher's method is used to find a weight vector
as the first principal features with all the training data in the input space

[6. 1]. The hyperplanes in perpendicular to the vector are show in Figure 1

(a). Then. the classified data are pruned off and only the unclassified data

in between of the two hyperplanes are used to train the second hidden node.

The residual data set from Figure 1 (a) is shown in Figure 1 (b). Since the
mean vectors of the two classes are very close now, Fisher's method does not
give the best principal features. In the second hidden node design, we use
a principal component analysis [4] to find the second principal features and

associated two hyperplanes. The network structure and associated training
algorithm is summarized in the Section 2.

For this classification problem, the Backpropagat~ion (BP) training method
takes hundreds of seconds to hours, and one still does not get satisfactory

classification. The Radial Basis Network (RBF) can converge to an acceptable
performance in 3.5 seconds, but it needs .56 nodes. On the same problem, a
design based on the principal feature classification only takes 0.2 seconds and
needs only two hidden nodes with a better performance than both BP and
P BF.

.. e°°; ode).. ( The "sa -at s
° ,i o 2 •.... ° "-

Fig. 1 (a). Tbc original data and the hyperplanes of the first bidden node

(Fisher's node). (b). The residual data set and the hyperplanes of the second

hidden node (Principal Component Discriminant node). (c). The partitioned
inout space by two hidden nodes and four thresholds designed by the Principal
Feature Classification.

2 PRINCIPAL-FEATURE NETWVVORKS

Principal P re r\elicr/,rs (PFN) are a class of neural networks based on the

principal feature concept. An implementation of the PFN is shown in Figure
2. It was called a Discrininant NeuTral Xelteork (DNN) in [1]-[4]. Similar

nate is also used for other methods [18]. So we have now changed the name

from DNN to PF-N to be more specific and to concentrate on the newx design

p-inciples.
The hidden nodes are the building blocks of PFN. The single hidden node

design algorithm is motivated by multiple-multivariate-Gaussian component
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Fig. 2. An implementation for Principal Feature Networks (PFN).

classification [19]. Two kinds of practical hidden nodes, a Fisher's Node,
for training classes with separable mean vectors, and a Principal Component
Discriminant Node, for training classes with common mean vectors, are used
to separate classes. They are designed for non-Gaussian and not linearly
separable cases [4].

When components of two training data populations Class 1 and Class 2
are described as having multivariate Gaussian distributions with sample mean
vectors and covariance matrices/pi, E 1 and P2, E 2 respectively, the minimum-
cost classification rule is given by:

Classl : L(x) > 0; Class2 : L(x) < 0; (1)

where x is an observed data vector or feature vector of N components and 0
is a threshold determined by the cost ratio, the prior probability ratio, and
the determinants of the covariance matrices, and
L(x) = xt(•- 1 - -2 1 )x - 2(ptE-' -- t21)x

N

= ZAlx'WIl 2 -2Wox, (2)
i=1

where W 0 =(pX'-1-E2) and for i > 0, Ai and Wi are the i'th eigenvalue
and eigenvector for matrix Eli1 - E2 1. Formula (2) is implemented as a
Gaussian Discriminanl Node in Figure 3(a).

The purpose of such a node is to provide a feature which permits an
approximately or locally Gaussian component of a class to be separated from
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other classes. It is not necessary at any stage to separate the whole class, but
simply to isolate the next separable component of the class.

When the covariance matrices in (2) are the same, the first, quadratic
term is zero, and it computes Fisher's linear discriminant. The general node
becomes a Fisher's node as in Figure 3(b). When the second term can be
ignored. the above formulas only have the first quadratic term. If we only use
the first eigenvalue, the Gaussian node becomes a quadratic node as shown in
Figure 3(c). The thresholded squaring function can be further approximated
by two thresholds as in Figure 3(d).

,, 
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Fig. 3. (a) A single 
Gaussian 

discriminant 
node. 

(b) A Fisher's 
node. 
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quadratic 
node. (d) An approximnation 

of the quadratic 
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covariance matrices and w is the weight vector [4]. The sequential hidden
node design and data pruning procedure has been introduced in Section 1.
See [1] - [4] for the details.

Generally speaking, other single-node (perceptron) training algorithms
can also be applied in PFN training. We prefer the above algorithms moti-
vated from multivariate statistical analysis because they can solve large ap-
plication problems much faster than gradient-descent or iterative algorithms
without worrying about local-minimum in a signal-node training.

3 HIDDEN NODE SIMPLIFICATION

We present two kinds of simplification algorithms for different applications,
Lossless Simplification for minimal implementation and Lossy Simplification
for improving the ability of the network for generalization. Depending on
applications, the lossless and lossy pruning algorithms can be applied indi-
vidually or together.

3.1 Lossless Simplification

After the hidden node design, the input space is partitioned by hyperplanes
associated with their thresholds and hidden nodes. Some of the hyperplanes
may not be necessary for a minimal implementation. The hidden node sinpli-
fication and the output node design can be treated as a Boolean minimization
problem. The function of the output nodes is to group the partitioned re-
gions of same class into one output binary word, i.e. to generate a Boolean
function F, such as d = F(y), where d represents the output binary words,
one word for one class, y is the binary words of the hidden node outputs,
one word for one region. Usually, in a multi-dimensional input data space,
some of the partitioned regions may not have data vectors. The regions with-
out data vectors can be used in Boolean minimization as don't care items to
simplify the Boolean function F. The Boolean minimization can be done by
logic-minimization algorithms implemented in computer software [15].

The above simplification algorithm will not change the logical representa-
tion of the Boolean function F. No region with data vectors is ignored and
nothing is changed on the network accuracy on the training data set, so it is
lossless pruning. The output nodes are designed during the pruning proce-
dure for a minimal implementation. However, it is not designed for improving
the network generality.

3.2 Lossy Simplification

The Lossy Simplification is developed for improving the ability of the network
to generalize to new data. The simplify algorithm is based on the performance
analysis of each threshold as well as hidden node. We call it lossy pruning
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because a subset of partitioned regions and associated training vectors will
be ignored and the network accuracy will be reduced on the training data
set. Compared to the lossless simplification, the lossy Simplification is much
faster and more practical for real applications.

During the PFN training, each threshold is labeled with the class parti-
tioned by that threshold. Also, the contribution of each threshold for each
class are saved in an array, called contribulion array. The array is used for
pruning analysis. We use the following example to illustrate the details of
the simplification algorithm.

4 A DESIGN EXAMPLE

Example 2: A principal feature network was designed to recognize 10 classes
of signals in a real application. Each of training and test data sets has about
3,000 examples and each example is a 24 dimensional vector. In the design
specifications, the expected network accuracy is 95%, which will be used
to determine the necessary number of hidden node, and the allowed miss-
classification rate is 20% for all 10 classes, which is used in determining the
thresholds to avoid over-fitting.

Using the sequential partition-pruning design procedure, all training ex-
amples were partitioned by 49 hidden nodes and 98 thresholds. The 49 hidden
nodes included 36 Fisher nodes and 13 principal component nodes. Each node
has 2 thresholds.

The contribution of each threshold was saved in a contribution array.
The array was sorted and plotted in Figure 4(a). From the Figure 4(a), we
can see that few of the thresholds have significant contribution to some of
the classes, but many thresholds have too little contribution in partitioning
the input space. The accumulated network performance in the order of the
sorted thresholds is shown in Figure 4(b). The more the thresholds we keep,
the higher the network accuracy we can obtain on the training data set, but
to keep too many thresholds which have too little contribution can affect the
generality of a designed network. In other word, to use more thresholds may
not give a higher accuracy on the test data set.

For this example, the desired network performance is 95%. A horizontal
dash-dot line in Figure 4(b) marked the desired 95% accuracy. The line has
an intersection with the curve of the accumulated network performance. We
projected the intersection onto the Figure 4(a) as the vertical broken line in
both Figure 4 (a) and (b). Then a necessary number of thresholds to meet
the desired network performance can be determined. For this example, the
first 38 thresholds in Figure 4(a) can meet the 95% network accuracy. Thus
the thresholds from the 39 to 98 can be pruned.

Once the thresholds are pruned, the hidden nodes which need to be pruned
can be further determined. If all of the thresholds associated with one hidden
node are pruned, the hidden nodes should be pruned. In this example, after
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Accumulated Network Performance
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Fig. 4. (a) (bottom) The sorted contribution of each threshold in the order of
its contribution to the class separated by the threshold. (b) (top) Accumulated
network performance in the order of the sorted thresholds.

threshold pruning, 31 out of 49 hidden nodes have at least one associated
threshold, thus these 31 hidden nodes are kept and other 18 hidden nodes are
pruned. After the simplification, the actual design performance on the train-
ing set is 91.44%. On the test set, the simplified network has a performance
of 87.68%.

5 COMPARISON AND CONCLUSIONS

Principal feature networks (PFN) have been compared in experiments with
the most popular neural networks, such as backpropagation (BP), and ra-
dial basis function (RBF) network in term of performance, complexity of
structure (number of hidden nodes), training time, and million floating-point
operations (Mflops). One comparison was given in Example 1. In [3], the
PFN was compared with BP, RBF, and linear discriminant analysis (LDA)
in a multispectral image recognition problem. Due to the very large data set,
both BP and RBF failed to train a classifier in a reasonable amount of time.
For that problem, the LDA gave a classification rate of 55%; a modified RBF
reached a rate of 60% with 490 hidden nodes in 221 Mflops; the PFN reached
a rate of 72% with 77 hidden nodes in 38 Mflops.

The training procedure of sequential addition of hidden nodes in PFN
looks similar to several constructive algorithms which have the capability to
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add hidden nodes while the training in progress. These constructive algo-
rith-s ir:clude DecBms o Tree Algoy'lims (DTA) [12], :Veural TIee XewOmrk'

- N-) [10'. 11], f- s'er Tree Xelwonks (FIN_) [7'. 8] Cioscorh-Correltolion Ar-

ch 'ec2 'rc (CC'A) [9]. Pieceawi.5c-b1n ear discrrinalien (PLD) [13]. Tiling Al-
G - 4 q fIT A)[16]. etc. For those algorithms and network architectures. since
they are easy to he cool pared, we focus the comparison on theory and con-
'e-,,ual levels in the following list. Generally speaking. the PFN has the

adv antages of these networks or training algorithms. it can get 100 c accu-
ray o01 trai'Oing set when it is necessary. It also has many new functions and

) Except PE N. TA. and PLD, all other algorithms are for tree structures
wan no- for parallel iteplementation. In [8], the author give a algorithm to

conrt ITA to parallel architecture, however, the tree algorithms are not
nar Ural'y for parallel in.plementation which should be a major advantage
of ný7:-al networks. The PEN can be implemented in a tree structure for
soft are or in a parallel structure, such as a processor array, for VLSI design
w1 n it 'is necessary [5].

(2) Except PF and IA, in oeneral, none of the other algorithms consider
to p0runirg training clata imnmediately after each hidden node design. The
prunoi- cae reduce the training data set, release memory space, and make

0n hildden node design more efficient. Noriurallv after first few hiddee
od d11e 1 most of the tra'ining data are pruned. so the PEN training in each

2ddt:ona! hi'dden node will use lss and less time and i'emory space. The TA
retpýýts the -prunrig orocedure in every layer of the multi-layers training while
thke P o_ on1 needs to train one layer. The DTN and NTN can only prune

-i data when the-' reach the leaf nodes. The dimension of the input

space oD" the CCI hidden node gets larger and larger during the trainirig. so
tL( CCA '"fl be slowed down after adding more hidden nodes.

),ost of the alorithors, such as DTA, NTN, CCA, and TA, did not

a stp tatistical n.ethod 'n training whiclh can speed up the training sigrifi-

4 The NlT., CCA. and TA are based on gradient-descent or iterative
e wrich can slov: down the training and there is no guarantee for a

goa-ininuni.

(5) The DTl can only construct hyperplanes in perpendicular to pre-
smhed a'.-es which eithe reduces the performance or needs more nodes.

C ir FE ofle'; toe algorithm to deal with the case in which two or

n-_re classes are o'ver-lapped on one another and proved the optimal node
design adgorithne [41.

I The PFN allow quadratic nodes for a better performance.

(C) PEN and DTA allow: murtiple thresholds on each hidden nodes. This
ca • funie more data at each hiddeo node without using additiona1 weight

It can arso approximate the optiiral quadratic nodes.
r) D•n T have tree node pruning algorithms for a better

Sc,- o -n the t'st sets. Tlie lossy siirplification algorithrr "or PFN is
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simpler than the tree pruning algorithms.
(10) The PFN has the lossless simplification for a minimal implementation

as presented in this paper.
In conclusion, principal feature classification is a concept for designing

constructive neural networks. By applying multivariate statistical analysis
in defining and training hidden nodes, the principal feature networks can be
trained much faster than gradient-descent or other iterative algorithms. The
over-fitting problem as in most neural network training can be avoided in
determining thresholds, and the generalization can be realized in the loss-
less simplification. The principal feature network has been used in solving
real-world classification problems with large data sets. It gave better perfor-
mance, less CPU time in training, and simpler network structures than other
compared networks.
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Abstract
A novel neural network is proposed for the dynamic classification

of spatio-temporal signals. The network is designed to classify signals
of different durations, taking into account correlations among different

signal segments. Such a network is applicable to SONAR and speech
signal classification problems, among others. Network parameters are
adapted based on the biologically observed habituation mechanism.
This allows the storage of contextual information, without a substan-
tial increase in network complexity. Experiments on classification of
high dimensional feature vectors obtained from Banzhaf sonograms,
demonstrate that the proposed network performs better than time de-
lay neural networks while using a substantially simpler structure. The
mathematical power of the network is discussed, including its ability
to realize any function realizable by a TDNN. Additionally, principal
component analysis is used to introduce ý further improvement to the
network design by reducing the dimensionality of the encoded temporal
information.

Keywords: dynamic neural networks, habituation, classification, spatio-
temporal signals, recurrent networks

1 INTRODUCTION
Among biological mechanisms that can encode temporal information, is a partic-
ularly simple and well understood phenomenon known as habitoation [1], [3], [8],
[13]. Primarily, habituation is a means by which biological neural systems vary
their synaptic strengths in order to ignore repetitive, irrelevant stimuli. Habitua-
tion serves as a novelty filter. If the presynaptic neuron is active for a short period
of time, habituation tends to decrease the synaptic strength which then recovers
only after the period of activity is over. The longer the presynaptic neuron is active
the slower it recovers. It is important to note that habituation does not act in a
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vacuum. Other learning mechanisms, such as sensitization and Ilebbian learning,
may also be operating concurrently to alter synaptic strengths based on the utility
of the information from presynaptic neurons.

Several researchers in neurophysiology have developed mathematical mod-
els of habituation [1], [3], [14]. A discrete time version of the kVang-Arbib [14] ha-
bituation model for varying the strength, W(I), of a single synapse is summarized

by:
w ( + 1) = w'V(t) + r (0:ýt) (w(0) - IwV(t)) - IuV(1)/1(t)); (1)

z(t + 1) = r(i) + yZ(t)(z(l) - 1)1(t). (2)

In this model, 1(t) is the activation of the presyiaptic neuron at time 1, r
is a constant used to vary the habituation rate and a is a constant used to vary the
ratio between the rate of habituation and the rate of recovery from habituation.
The function z(t) monotonically decreases with each activation of the presynaptic
neuron. This function is used to model long term habituation. Due to the effect
of z(t), after a large number of activations of the presynaptic neuron, the synapse
recovers from habituation more slowly.

Aside from its primary function, habituation has also been suggested to
be a means of encoding short term temporal information [8]. lit this paper, we
introduce a mechanism for using habituation to encode temporal information in
an artificial neural network. In Section 2 we describe the general struct ure of our
design. In Section 3 we describe the mathematical properties of our mechanism.
We demonstrate that our mechanism is a special case of a general neural network
structure which is capable of approximating arbitrarily well any continuous, causal,
time-invariant, mapping from one discrete time sequence to another. Finally we
explain how it fundamentally differs from the gamma network model of de Vries

and Principe [5]. In Section 4, we discuss experimental results for our network on
the classification of artificial Banzhaf sonograms. We demonstrate that our network
is more efficient than TDNNs for a number of classification problems involving long
term temporal information. Finally in Section 5, we draw conclusions based upon
our theoretical and experimental results.

2 GENERAL STRUCTURE

We have designed short term habituation units based iupon the \Vang and Arbib
model of habituation [14] and used them in a spatio-temporal classification net-
work. A set of habituated weights is first obtained froii the input ](1). if the input
is multi-dimensional, one set is extracted for each comiponent. These weights are

affected by the past values of the input, and implicitily encode temporal informna-
tion. Spatin-temporal classification can thus be achieved by using such habituated
weights as inputs to a static classifier. For example, if a multilayered percep-
tron (MLP) (alt. radial basis function network) is used, the overall network is a
habituated MLP (alt. habituated RBF) that can be applied for spatio-teinporal
classification. The model equation is shown as follows.

Waj( + 1) = WV(i) + a(op(1 - W1-(1) - l!elI)J(t)) (3)

This equation is derived from Equation I by setting z(/) = 1 to eliminate long term
habituation effects, and letting Wa(t) rebound to I instead of 1I+10). Long term
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habituation is eliminated so that the ability of W/(t) to recover from habituation
does not vary over time. Otherwise the Wk(t) values would eventually decrease
to zero for all but the most infrequent of inputs. The k index is used to indicate
that multiple values Wk(t + 1) are determined for an input signal 1(1). It was
found mathematically, that multiple habituation values are better able to encode
temporal information. This fact may also have biological context, because it is
known that a given pair of neurons often have multiple synapses between them.

In this paper, dynamic classification is achieved by training a suitable
nonlinear feedforward network, whose inputs are a set of m habituated values,
Wk(t + 1), 1 < k < m, that are extracted from the raw input 1(t). Figure 1
shows the generic structure of such a classifier. In [14] Wa(t) represents a synaptic
strength, and I(t) the activity of the presynaptic neuron, but because our designs
use habituated values as network inputs rather than weights, the variables are re-
defined accordingly. We do not mean to imply that this network construction is
either the most biologically feasible or the only method in which habituation might
be used. A more biologically inspired approach would be to reflect IVV(t) as modu-
lating weights of the inputs. We found by experiment, however, that this approach,
although more biologically feasible, does not encode temporal information as well
for the classification problems which we studied. Moreover, the structure of Figure
1 can be shown mathematically to be very powerful.

The parameters, rk and ak affect the rate at which habituation occurs,
thereby determining the temporal resolution and range of the information obtained.
The issues and tradeoffs involved are akin to memory depth versus resolution in
dispersive delay line based models [5], [6]. We set, Wk (0) to zero for all k, employ
positive values of ak and 7k such that Oark + 7k < 1 and normalize the input such
that 1(t) G [0, 1]. With these specifications, we can guarantee that the habituation
process is stable. In fact we can guarantee that WK(t) E [0, 1] for all values of k
and t.

3 MATHEMATICAL PROPERTIES

In this section we present theorems regarding the ability of a general category of
neural networks, including habituation based networks, to approximate arbitrarily
well any continuous, causal, time-invariant mapping f from one discrete sequence
to another. Since all functions realized by TDNNs with arbitrarily large but finite
input window size are continuous, causal, and time-invariant, the proofs of the
theorems also imply that habituation based networks can realize any function which
can be realized by a TDNN [10]. The key to the proof is to show that the memory
structure realized by the habituated weights is a complete memory. Then so long as
the feedforward stage is capable of uniformly approximating continuous functions,
the overall network will be capable of mapping one sequence to another.

Due to space limitations, the theorems are stated without proof. An in-
terested reader may obtain a copy of the complete proof by anonymous ftp to
ftp.lans.ece.utexas.edu. The file in question is /pub/hab-proof .ps. The proof
is related to previous work by Dr. I. W. Sandberg. In [9] lie demonstrates a method
for determining necessary and sufficient conditions for universal approximation of
dynamic input-output mappings. Also in [10] lie demonstrated a universal approx-
imation proof for structures similar to that of Figure 1, with the exception that the
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temporal encoding is performed with linear functionals.
Let X be the set of discrete time sequences for which I E ._ implies

1(i) E [0, 1]. Let R be the set of all discrete time sequences. We are attempting
to approximate a continuous, time-invariant, causal function, f, from X to R.
We know additionally that any TDNN can be represented by such a function.
As illustrated by Figure 1, we suggest transforming the inputs with m habituation
units. After habituating, it is our conjecture that f can be approximated arbitrarily
well by an MLP or RBF which takes the habituated values, W1 k..(1 + 1), as inputs.
If our conjecture is true, then a habituation based network is able to realize any
function realizable by a TDNN.

Theorem 1 states that a two layer neural network with an exponential
activation function and a particular structure for processing the inputs can uni-
versally approximate f. Theorem 2 states that habituation based networks are a
specific case of the generalized structure exhibited in Theorem 1.

The results of the two theorems can be readily extended to include ha-
bituated MLP and RBF networks and to include multiple (d > 1) spatial input
dimensions, Ih(i), 1 < h < d. In order to show that habituated MLPs and RBFs
can perform the same approximations it, is sufficient to show that the exponential
function can be approximated arbitrarily well by a summation of sigmoids or gaus-

sian functions. This is a special case of theorems which have already been proven
for sigmoids by Cybenko [4] among others and for gaussian functions by Park and
Sandberg [7]. The expansion of the result to multiple spatial dimensions follows
directly from the proof of Theorem 1.

Before we state the theorems it is necessary to make a couple of definitions.
First we will define the delay operator, T0 .

(Tg3X)(t) 0 0 ifI < 3
)( x(t - i3) otherwise

Next we define the concept of a complete memory. Let B be a set of mappings
from X to R. B is a complete memory if it has the following four properties. First,
there exist real numbers a and c such that (bl)(t) E (u, c) for all I E Z÷, + X X,
and b E B. Second, for any t E Z+ and any to such that 0 < to < 1, the following
is true. If x and y are elements of X and .r(lo) #4 y(lo), then there exists some
b E B such that b6(t) j by(t). Third, if b E B then (blf>x)(t) = (bt)(t -/3) for all
i E Z+, all x G X and any /3 such that 0 < /3 < t. Fourth, every b (E B is causal.

Theorem 1 Let f be a continuous, causal, time-invariant function from X to R.
If B is a complete memory then the following is true. Given any e > 0 and any
arbitrarily large positive integer, t o, there exist real numbers, a3 and cJ, elements
of B, ba;;, and natural numbers, p and m, such that thc following incquolity holds

for all z E X and all t < t o.

(f x)(t) - aexp E C-bk~)1 (4)

.t=i \~

By proving Theorem 1 we demonstrate that a two layer static neural
network with an exponential activation function and inputs operated on by elements
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of a complete memory, B, can perform the same function as any TDNN. In order to
show that a habituation based network is a special case of this type of generalized
structure we state the following theorem.

Theorem 2 Let bo = W(O) = 1. A prototypical habituation function is defined
recursively as follows.

bx(O) = W(1) = bo + ar(1 - bo) - rbox(O) (5)

bx(t) = W(t + 1) = bx(t - 1) + aor(l - bx(t - 1)) - rbx(t - 1)x(t) (6)

Let B be the set of all such functions for all o and r G 7R such thot a > 0, r > 0,

,r < 1, and ar + r < 1. B is a complete memory.

It is important to notice that the input processing functions, b;k used in
Theorem 1 depend on j and thus the habituation parameters used also depend
on j. This means that different hidden units in the feedforward network may have
different input values. This dependency is not present in the structure illustrated in
Figure 1. However, we can show that for any approximation g of the form discussed
in Theorem 1, there is an equivalent network without this dependency. Let g be an
approximation function of the form -=>1 a. exp (Zk=l c 3kbjkx). It is easy to see

that given any such g one can find an h of the following form such that g(r) = h(x)

for all x E X.
p &

h(x) = aj exp ws (7)
3---1 ( i=1

Here wji are real numbers which serve as weights to the hidden units and s, are
elements of a complete memory B.

Simply choose M to be the number of distinguishable functions bjk used
in g and let the sequence {si} be the list of these distinguishable functions. For
a particular si and a particular hidden node j, set zv, to zero if the original bak
corresponding to si was not present at hidden node j, otherwise set lv,, to the
appropriate cjk. An approximation of the form given by h has the same structure
as that given in Figure 1, so the structure illustrated in Figure 1 is adequate.

Now we have demonstrated that habituated MLPs and RBFs are satisfac-
tory substitutes for TDNNs. The question that remains is which are miore efficient.
The answer depends on the nature of the function that is being realized. The com-
plexity of TDNNs depends on n, the input window size. The number of weighted
inputs to each hidden unit in a TDNN is nd. For functions which only depend on
recent values of the inputs, TDNNs can be quite efficient; but for functions which
depend on long term temporal information or variable amounts of temporal infor-
mation, TDNNs are not efficient solutions. For habituated networks, the required
memory depth and resolution affects the choice of a and 7 in Equation 3, and the
number of habituated weights. Differents weights can have different values of ce
and r, and the number of weights used can vary in different dimensions. Thus the
memory structure can be optimized for a given mapping. The iumber of inputs to
each hidden unit is Eidl mi, where m, is the number of habituation values used
to encode the ith component of 1(t).

A parallel can be drawn between finding a suitable m. and finding a suitable
number of hidden units in an MLP or RBF. Ini both cases there is no guarantee
that the number required will not be inordinately large. However, in the case of
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the MLP, a large set of problems have been found for which a small number of
hidden units is suitable. The same is true for finding m. There may be many
simple problems which are unsuitable for TDNNs because they require long term
temporal information, but which can be solved with habituated networks with small
values of m.

Since the output of the short-term memory stage is different for TDNNs
and habituated networks, the complexity (number of hidden units) of the feedfor-
ward network needed at the output stage may also differ. For certain problems,
habituated networks require a smaller feedforward output stage as compared to
TDNNs for a given level of approximation. We have previously performed exper-
iments using habituated MLPs to classify real SONAR data and have found that
small habituated networks outperformed larger TDNNs. In fact we found that even
m = 1 networks dramatically outperformed TDNNs with time window length of
5 or more [11]. Unfortunately due to the proprietary nature of the real SONAR
data sets, they cannot be made public. Therefore, in the next section, we discuss
experimental results on artificial Banzhaf sonograms, which can be easily generated
and verified by other researchers.

The Gamma network proposed by Principe [5] has a structure which is
similar to ours, but there are significant differences. For one, unlike habituation,
the input transformation used in the Gamma network is linear. The nonlinearity
of habituation can be readily seen by expanding W(t + 1) to obtain:

t t t

W(t+1) = r+ ar E J( - r - rI(h)) + W(0) J(1 - ar- rI(i)) (8)

j=1 h=j i=O

Secondly, in the Gamma network each transformed input, 1,17, depends on the pre-
vious transformed input, Wi- 1, but in a habituated network each Wi is generated
independently from the raw inputs.

4 EXPERIMENTAL RESULTS
The networks were trained on data sets consisting of Banzhaf souograms, superpo-
sitions of 2-D gaussians in time and feature space [2]. The signals constructed are
variable length (30-45 samples) sequences of 30 dimensional feature vectors. The
reasons for choosing Banzhaf sonograms and specific details about the design of
the data sets used are discussed in [12].

Three data sets were constructed with 7 classes each including a "noise
only" class. The signals in the data sets were Banzhaf sonograms which were
rotated, scaled, warped, and combined with additive noise. Figure 2 shows proto-
typical examples of each signal class in data set one (DS1).

Classification of DS1 is a problem which requires relatively long term tem-
poral information. It is impossible to uniquely classify any signal based on only a
short temporal window of inputs. For example, consider the prototypical signals of
classes A, B, and C as illustrated in Figure 2. The signals in classes A and B are
identical for the first twenty time samples, while classes A and C are identical for
the last twenty time samples. Additionally, there is no time window of less than
ten samples in any of the three signals that is not identical to a time window in
one of the other two signals. This classification problem is obviously difficult for
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short window TDNNs. In order to demonstrate the effectiveness of habituation for
problems with a range of difficulties we have constructed two other data sets which
do not depend as severely on long term temporal information. Data set 2 (DS2)
and data set 3 (DS3) were generated using the same parameters as DS1 except that
the centers of the component gaussians were shifted to reduce the overlap among
the classes. In DS2, the component gaussians of samples of a particular class were
all shifted uniformly, whereas in DS3, individual component gaussians were shifted
so that a particular gaussian component might act as a tag for identifying the class
membership of the signal. For this reason DS3, is the most local temporal informa-
tion rich of the three data sets, and one would expect TDNNs to perform relatively
better on DS3 than on either of the other data sets.

For our first experiment, we trained habituated MLPs and TDNNs on
DS1 and DS2. The patterns in both data sets were randomly shuffled so that
the classification of each pattern was uncorrelated with the classification of nearby
patterns in the sequence. When the habituated MLP was tested, the habituation
values, Whk(t + 1), were calculated at each instance in time and then fed into the
feedforward portion of the network. At each instance in time an output vector was
computed and then used in classification. As an optimization, only the habituation
values computed for the last ten samples in each signal were used to train the
habituated MLP. This reduced training set method was used because habituation
gradually builds up information about a signal as the signal is presented. During the
first few samples of a signal, a habituated MLP does not have enough information
to classify a signal. By the end of the signal, however, the network should have
accumulated enough information to perform the classification. The reduced training
set method was not used for TDNNs, however, because they exhibit no similar
dichotomy in the way they store information over time.

For the first set of experiments we used habituated MLPs with random
values of ahk and rhk in the range [0, 0.5]. The o'hk and Trhk parameters were not
modified during training. The number of habituation units per input, m, was set to
one. We found that for DS1 the habituated MLP, (H-\MLP), greatly outperformed
a 5 sample time window TDNN and an MLP. All three networks utilized 10 hidden
units. Increasing the number of hidden units was not found to greatly effect the
performance.

Classification and detection of signals is accomplished using two thresh-
olds, H and L. Detection occurs whenever a single output node has an output
value, Oma., larger than all other output nodes, OM-,. > H, and all other output
values are less than 1 - H, for L consecutive input presentations. Classification

is considered to be correct for a given signal if the only class detected within the
length of the signal is the desired class. The best values of H and L may vary from
network to network. For a fair comparison, for each network one should select the
L for which the network achieved its highest classification rate for some H.

Figure 3 illustrates performance on DS1 in terms of the classification rate,
i. e. the percentage of signals detected as well as correctly classified. Labels such
as "L10" are included in the figures to denote the particular value of L used. As
mentioned earlier, the best value of L was chosen for each classifier in order to make

a fair comparison.
Results for DS2 similar to those found for DS1 are illustrated in Figure 4.

For conciseness, this time the results are given in terms of the classification rate
only. One notices in Figure 4, that although the -IMLP has achieved a greater
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maximum result than the TDNN, it does not have a better result at every value of
H. This is an artifact of the particular L values used. The greater the value of L
the steeper the decrease in performance for increasing H.

The HMLP was able to outperform the TDNN, because unlike the TDNN,
the HMLP is capable of encoding long term temporal information. On DS1 this
is particularly important, because classification is impossible without information
from a large portion of the entire signal length.

One method for improving HMLP performance and reducing the com-
plexity of the static classifier stage is to perform principal component analysis on
the habituated values. The sequence of habituated values generated for a single
pass through the training set is stored and the covariance matrix, M, is deter-
mined. Next, the eigenvalues and eigenvectors of M are computed. Finally the
set of eigenvectors, A,, corresponding to the largest few eigenvalues are selected.
Each vector of habituated weights, W(t), is then replaced by the sequence of dot
products, W(t)TAi. These dot products are presented to the static classifier instead
of the habituated values themselves.

By applying principal component analysis one can decrease the correlation
among inputs to the static classifier, as well as, decreasing the number of inputs.
For an HMLP with m=l the number of inputs to the static classifier was reduced
by a factor of 3, while simultaneously improving the classification rate on DS1 from
55 to 68 percent.

So far all the experiments discussed have focused on HMLPs with m=1,
and randomly assigned habituation parameter values. Experiments which examine
the effect of varying the m, aik, and rik can be found in [13].

5 CONCLUSIONS

A multiply habituated MLP (MHMLP) can realize any function realizable by a
TDNN with an arbitrarily large but finite input window. The relevant issues for
comparing the two thus are which generates a simpler structure for a given accuracy
level, and which network is easier and quicker to train. From the empirical results
determined so far, MHMLPs are consistently more efficient than TDNNs. In fact
for DS1 and DS2, a single habituation unit per input HMLP outperforms a TDNN
with 5 sample time windows. Even on DS3, an MHMLP with m=2 was able to
perform as well as the more complex 5 time sample TDNN. Note that because of the
difficult nature of the data sets, the classification rates are low for both networks.
Of course they perform much better than static classifiers (MLP, RBF) which fail
because of substantial overlap among different classes at any time instant.

Simple MHMLPs seem to do particularly well on data sets which require
long term temporal information for classification. In such cases, TDNNs need long
time windows in order to perform well. Such TDNNs tend to be overly complex,
leading to slow training and poor generalization.

Additionally it was found that large improvements in the complexity and
performance of HMLPs can be obtained, by performing principal component anal-
ysis (PCA) on the habituated values. When PCA was used with DS1, a 13 percent
improvement in performance was obtained, despite the fact that the number of
parameters trained was reduced by more than twofold.

The performance of MHMLPs are quite robust with respect to parameter
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values. The netwiorks do well even when the habituation parameters are randomly
assigned and never optimized. The next step in this research is to develop means of
optimizing the habituation parameters, a and r. Another topic for further study
is to investigate other input transformation mechanisnms, since a result similar to
Theorem 1 can be proven for any set B which is a complete memory.
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ABSTRACT
A method for parametric estimation of higher order spectra of time series us-
ing a nonlinear autoregressive model based on multi-layered neural networks
(NNAR model) is presented. In the real world problems, there exist signals
that can not be described sufficiently by linear time series models such as AR.
or ARMA models. In order to characterize such signals, several nonlinear
time series models have been investigated in recent years. However, in con-
trast with the case of linear models, there are a few parametric approaches
that estimate the higher order statistical characteristics of observed time series
using such nonlinear time series models. It is very difficult to derive analyti-
cally explicit fornulations of higher order spectra from the expressions of such
nonlinear time series models. In this study, employing numerical techniques,
we constructed a parametric estimator of higher order spectra. It consists of
following steps: 1. training an NNAR model on the given time series, 2. iter-
ation of numerical integrals for solving the joint probability density function,
3. calculation of higher order cumulant functions by renewal equations based
on the joint probability density function solved in 2., 4. multidimensional
discrete Fourier transforms of higher order cumulant functions calculated in
3. We also show that any NNAR model with finite valued weights satisfies a
sufficient condition of convergence.

1 Introduction
In the case of Gaussian time series, we can obtain a sufficient information
about time series front the power spectra as the statistical characteristics
of the time series can be described completely by the first and second
order moments. Specifically, the linear AR model has been used widely
in many areas of engineering as a conventional parametric estimator of

power spectrum [1].
However, there exist many signals that have non-Gaussian nature.

Since the nonlinear time series models can generate non-Gaussian time
series, several authors have proposed them to characterize such non-
Gaussian signals [2][3]. However, in contrast with the case of linear
models, there are a few parametric approaches estimating the higher or-
der spectra [4] of the observed time series using nonlinear time series
models, except for some special cases [5]. In this study, we constructed
a parametric estimator of higher order spectra using a nonlinear au-
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toregressive model based on the multilayer neural networks. It is very

dificult to analytically derive the explicit forms of the joint probability

density function from the expressions of such nonlinear time series mood-
eis. Although the analytical solutions are not available, we can construct

a parametric estimator of higher order spectrum using some numerical

solutions. In general, if there exists a stationary joint prol)ability den-

sitv function of a nonlinear autoregressive model, this function satisfies a

certain integral equation. Here we take an approach to solve the integral

equation with an iterative formula using numerical integrals.

2 I'sTonlinear _Autoregressive Model
A general form of the nonlinear autoregressive model is given as follows:

X'k F F[xki--] ±+ CA (1)

Xere k. -1,q- (Xk. -, X 5 >. , -) 29- .C is an i.i.d of Gaussian
( ( ), /1 < )c, oy < "), F[ ] is a continuous function:R t - R,

aIld (.)' means the transpose of a vector.

We can rewrite (1) as a state space representation:

Xkq = f(Xi ,- 17,, e ), (2)

where [(Xk- !,,,a ) = (F[Xki-r I] + C1. k, -I,, X- 2, , .).-qTI)T. Equa-
tion (2) describes xi,,q as a real-valued Markov chain on the state space
PR. The behavior of x,.. depends on the shape of the continuous func-

tion F.

It has been shown that multilayer neural networks can avoid the dif-

ficuitv called -curse of dimensionality" from which ordinary methods for
f'nction approximation suffer [8]. WAVe construct the continuous function

F by multilayered neural network as follows:

F[Xk-l 'J = V1½ (3)

there dI 1 M )"o) Oi = 6(07Virs .- - 02) is an output of ith
1

hiddden unit. 0(lr) - is a sigmoid function. V E R"' is anI + ex~p(-X-)
ourmut weight vector, Vi C- RP is an input weight vector connected to
the th hicden unit. Oi is a bias for ith hidden unit. 6 is a bias for output

unit. q is a total number of input units, and a2 is a total number of

hidden units.

The above model is called a neural network autoregressive model

(NNAR). This type of time series model has been applied to behavior

prediction of various systems [6]. Fitting the NNAR model to the given

tihe series is achieved bly minimizing predictive error using conventional

trauning alrorliifms.
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3 Stationarity of NNAR model
A sufficient condition for existence of stationary joint probability density

function of Markov chain (2) was given by Chan [7]. In this section we

show that NNAR model satisfies this condition.

If f in (2) is assumed to be decomposable as follows:

f(Xk-l,q, ek) = T(Xk-l,q) + S(Xk-l,q, ek) (4)

where T : Rq -- Rq, S : Rq+1 -+ Rq and an extra sequence zk is defined

as z, = T(z,-l) , z,, E Rq. Furthermore, we assume S can be written

as:

S(Xkl,q, Ck) = F[Xkl,q] + ek (5)

Under the following conditions Al.-A5., Markov chain defined by

(2) is geometrically ergodic, provided that f is continuous everywhere

and continuously differentiable [7]. If Markov chain is geometrically

ergodic, it always has a stationary joint probability density function.

Al. 0 = T(0), and 3K, c > 0 such that Vn > 0 ; starting with

z0 e Rq, II Zn .1< Ke-c 11 z 0 11, where 11 H1 denotes the Euclidian norm

in Rq. A2. ek has probability density function 7r(.) that is continuous

and positive everywhere. A3. F[.] is bounded over bounded sets. A4.

IM > 0, such that Vx, y E Rq, 11 T(x) - T(y) Jl< M 11 x - y 11. A5.

For some T > 0, El[I S(xk-l,q,ek) I1 given Xk-l,q = X] <_ T, Vx E R.

f in (2) can be rewritten as:

f(Xk-l,q, ek) =(0, Xk-1, Xk-2, , Xk-q+l)T (6)
+ (F[Xk-i,q] + ek, 0, , ,. , OjT.

Then, we can obtain a form (4) by defining T and S as:

T(Xk-l,q) = (O, Xk-lXk-2 ...",Xk-q+l )T, (7)

S(Xk-l,q, ek) = (F[Xk-l,q] + ek, 0, 0,'", O)T.

T satisfies clearly Al. and A4. Because ek is Gaussian, A2. is also

satisfied. The sigmoid function 0(.) is bounded over R, consequently,

for all m, Vi (i = 1,... ,rn), b(< oo) , there exists c < oc such that

IF[xk-l,q]I < c, then A3. is satisfied. From this and (5), and properties

of ek, we have

E[II S(xk 1,q, et) 11 Ix•. 1.. =x] = F[x] + E[ek] < c + • (8)

Substituting c + [t, for T, we can show that F given by (3) satisfies A5.

Hence, we established geometric ergodicity of NNAR model.
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and p(xk)is a marginal density function of joint probability density func-
tionl p(xk,q):

P(Ok) = ... f,)- P(Xkq)dxk-1 . dXkqq+i. (13)

We must know p(xk,xk-_) in order to execute numerical integration of

(11). In the case of r < q, the marginal density function of p(Xk,q) can

be computed directly as follows:

P(xk•,k-,) L P(xt,q)dxk-I ... dX•-_•+, (14)

d3k-r-, " " ", dXk-q+l.

In the case of r > q, we can construct a renewal formula using a property
of the Markov chain. Namely, from the (q + 1)th order joint probability
density function p(Xk-lq, Xk-r) we can derive P(Xk,q, Xk-) that has a
lag interval with one lag step longer than p(Xk-1,q, xk-,):

P(Xk,q, Xk-r) f- 7T(Xk - F[Xk-l,q])P(Xk1l,q, Xkr)-)dXk-q. (15)

Then, setting initial joint probability density function P(Xk,q, Xkq) as:

P(Xk,q,Xk-q) - (Xk F[Xk-1,q1)P(Xk-1,q), (16)

we can compute p(Xk,q, Xk-r) for all r(> q). p(Xk, Xk-r) is given as a
marginal density function of p(Xk,q, Xk- ):

p(xk, xk--) - .. P(Xk,q, xk_)dXk1 ... dXTkr,+ (17)

dXk-,k l ... dXk-q.

Finally, power spectrum can be represented in a form of discrete
Fourier transform of 2R(r):

P(w) = 2R(r) exp(-jwr). (18)

5.2 Bispectrum

Bispectrum B(w1 ,w2 ) is defineded as two-dimensional discrete Fourier
transform of third order central moment function 3 R(r', s):

B(Li,),W 2 ) = ~ 3R(rs)exp(-j(49r+w2 S)), (19)
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-where.

- c.S) 100 I)(w 'k c-, /1)

Pý(.T17,Xkr.ý XA._,)d1'kdXk-,JIXk- (20)

The third order joint probability density function I)(ckf C s.C 1': ) in

(20) can be calculated using following renewal procedure:
In the case of r < , < qK p(xe-,Xk.. ..- r5 ) is given as a marginal

dei>sit- flnliction of' p(Xk ,):

PO 'k,. - :A--,- k., 1•i.. .) (X... ,,,x •,) d~ k. - ...

dfnj. - +r I(IXk-r-- I ... 7L• l' i k-1-l .. .] X" -q + 1 (21)

In the case of (I K r <_ ,s, the (p- 2)th order joint probability density

functioll pr.,. ..ct, ,-) is calculated as follows:

P(Zk,,A .X ,,b J,Ž) 71 Or(xr - F[X i,_]) (22)

To set the interval between r and s an arbitrary length, we Ise the

follow.ing formula:

P(Xk ,-.r~. 7T(37k -[Y i])f(, x )dr/'(23)

wliero r = a. Then. for all r and .s, we can obtain p(Xkq, X k•, X,._ 5 ) bY
taking marginal densitY finction as:

( .. , ,.. ..t...) p(xk.,. rk• rXk 0) (24)

75 NTu _T_ eracal Exammple
In tris section. we present a numerical example of parametric estimation

of pov-er spectrum and bispectrum. As an example of the time series we

gelnerated following signIal:

J'A' = sio (ý0 k) + 0.,5 sin(29 '0/k) ÷C Ek (A- 0= 1. 2047) (25)

where. j is a Gaussian white noise: A"(0, 0.0025) and "CO = 3.14/5 _

,/5. Figure 1 shows the distribution of the data on the state space

(x.. : W). e trained the NNAR model with the structure 2-intput(lag

order). 7-hidden, and 1-output. Figure 2 shows the joint probability
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density function p(Xk, xk-1) computed by the procedure described in 4.
It can be seen that p(Xk, X- 1 ) well represents the complex structure of
the distribution of data (Figure 1).

Figure 3 shows the estimated power spectrum. The estimated power
spectrum has two clear peaks at Lo = (wo, 2w 0 ). This means that the
NNAR model can acquire the second order stochastic characteristics of
the signal correctly, while the linear AR model with the same lag order
2 can not detect two spectral peaks.

Furthermore, we estimated the bispectrum by the procedure men-
tioned in 5.2. Figure 4 shows the estimated IB(Loi,Wo2)1 2 , , _> 0, LO2 _>
0). The true bispectrum of the signal (25) has a peak at (Woo0). It
can be seen that the estimated bispectrum approximates well the true
structure.

-- • ? 2.0

0.
-2. 00, 22.0

Xk-1

• -- 0.0 -2.0

-2.0 0.0 2.0
Xk-2.0 0.0 2.0

Xk

Fig.l The state space plots of data Fig.2 The estimated stationaryjoint probability

density function

01.

00.8

0.6

-0.2 W'2//I:

0.0 0.2 0.4 0.6 0.8 1.0
11(10. 0.2 0.4 0.6 0.81 1.0

Fig. 3 The estimated power spectrum Fig.4 The estimated bispectrum

7 Conclusion
A method for parametric estimation of higher order spectra of time se-
ries using a nonlinear autoregressive model based on NNAR model is
presented. Advantages of the NNAR model as a universal time series
model are follows. As clarified in 3 for any finite weight values, the
NNAR model has always stationary joint probability density function.
Consequently, no special modifications of learning algorithm are required
in order to keep the model stationary. Arbitrary continuous function F
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with several variables in the difference equation (1) call be approximated

IY muiltilaver neural networks. Furthermore. nmltilayer neural networks

can ivoid so ctalled difficult'v "curse of dimeitsionalitY" iS].

C irrtl lywe are investigating the evahiation of the computational

error and sjtePding up the calculations. Bearing iil nlinti the enormous

povwar of flittre computers, the presented method can be one of the

stalllard signal processing techniques.
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Abstract A neural network classifier using fuzzy set representation of
pattern classes is presented. Network construction and learning is per-
formed incrementally in a single pass by building an aggregate of space-
filling regions that constitutes a simplified variant of the construction
known as Dirichlet tesselation (or Voronoi diagram). Each region is de-
limited by a set of hyperplanes and is endowed by a fuzzy membership
function that forms the basis of learning and recall. Experimental re-
sults concerning difficult recognition problems show that the proposed
approach is very successful in applying fuzzy sets to pattern classifica-
tion.

1 INTRODUCTION

Several models have been developed during the last years in an attempt
to combine fuzzy systems and neural networks. Some of them focus
on applying this synergistic combination to building efficient pattern
classifiers [5, 7, 9], as the application of fuzzy sets to pattern classification
has been considered for many years.

The fuzzy neural network presented here is an example of neural
network classifier that builds decision boundaries by creating subsets of
the pattern space. The creation of fuzzy subsets is based on the partition
of the n-dimensional space in a way that constitutes a direct adaptation
of the notion of Dirichlet tesselations, also known as Voronoi diagrams

0-7803-2739-X/95 $4.00 © 1995 IEEE
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or Thiessen polygons [1].
A Dirichlet tesselation of a set S of points (called sites) is a partition

of the n-dimensional space into convex polytopes. Each polytope which
is also called 'cell' or 'tile' belongs to one site of the set S and contains
all points of the space for which this site is the closest, or the one with
the dominant influence. Each cell is defined with respect to an arrange-
ment of halfspaces as the intersection of a finite number of hypeplanes,
which are the perpendicular bisectors of the segments joining pairs of
sites. From a given set of n-dimensional points classical Dirichlet tesse-
lation can be constructed by obtaining the convex hull of these points [1]
or by incremental insertion of the regions of these sites [3, 4]. Dirichlet
tesselations express the proximity information of a set of given points in
a very explicit and computationally useful manner that makes it appli-
cable in many diverse areas among which are biology, visual perception,
crystallography and archeology.

The application of Dirichlet tesselations to the design of neural net-
works has been considered recently. In [8] two neural network construc-
tion algorithms for pattern classification are proposed that rely directly
or indirectly on the Dirichlet tesselation of the space based on the given
training patterns. An efficient adaptation of the above algorithms is
presented in [6], whereas a systematic procedure for designing neural
networks following the same principle is formulated in [2]. In this paper
we develop an analogous construction approach which incorporates the
idea of fuzzy set classes by defining fuzzy decision boundaries for the
regions of the tesselation. The proposed scheme allows for efficient on-
line supervised learning using appropriately defined fuzzy membership
functions during both learning and recall.

A description of the proposed fuzzy classification network is pro-
vided in the next section, while the network construction algorithm is
presented in Section 3. Section 4 concerns experimental results from the
application of the approach to difficult classification problems. Section
5 briefly describes the extension of the model to the case of both contin-
uous and discrete attributes, and finally Section 6 summarizes the main
conclusions.

2 FUZZY SET CLASSES AND NETWORK

TOPOLOGY

Consider a classification problem with n continuous attributes, such that
the n-dimensional patterns belong to p distinct classes. By means of the
proposed construction scheme, we shall define a set of regions filling the
feature space such that each region is associated with exactly one from
the pattern classes. A properly computed fuzzy membership function
(taking values in [0, 1]) indicates the degree to which a pattern is con-
taimed within each of the regions. During operation, the region with the

154



slo

Figure 1: A partition of the plane

maximum membership value is selected and the class associated with
the winning region is considered as the desicion of the network.

Learning in the fuzzy classification network consists of creating and
adjusting regions and associating a class label to each of them. Each
region is characterized by a point, which will be called the site of the
region, and can be expressed as the intersection of a finite number of
closed half-spaces defined by hyperplanes that separate regions of differ-
ent classes. Regions corresponding to the same class can be overlapping.
In general, not all training patterns constitute sites of regions. Following
the principle of Dirichlet tesselations, the points of a region are closer
to the site of the region than to all other sites belonging to different
classes. This feature constitutes a relaxation with respect to the strict
definition of Dirichlet tesselations and implies a construction scheme that
prescribes no separating hyperplane between regions of the same class.
Figure 1 represents such a convex construction on the 2-dimensional
space, based on the Dirichlet tesselation principle, for a set of 9 input
points with three seperated classes (dotted lines would be present in a
classical Voronoi diagram).

When an input pattern a = (a 1..., a,,) is presented to the network
during operation, the corresponding membership function for each region
is computed. The membership function bi(a) for the ith region must
measure the degree to which the given pattern falls inside or outside the
region. This can be considered as a measurement of how far is situated
the pattern from all the hyperplanes which define the region. When the
pattern a is in the interior of the region and far from the hyperplanes
then bi(a) approaches 1, the value 1 meaning that the point is very
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Figure 2: Fuzzy decision boundaries

close to the site of the region. When the pattern falls outside the region
tlhen the membership value approaches zero, the value 0 meaning that
tbis point is close to some other site. A function following the above
o-7c'elines is the average value of the normalized vertical distances xh of

the p'ttern from all hyperplanes h supporting the region. Each distance
is normalized with respect to the distance Ih of the site of the region

froM oiherplane A.
Consider the function signo (a) which describes on which side of the

h m rplane A lies the pattern a. if it lies in the positive half space h+
we have shon (a) 1, else if it lies in the negative half space A- then
siwn;roa) = -1. Also consider the quantities vn, which take the values

or -1 depending o0 whether the site i is situated in the positive or
e half-space defined by the hyperplane A, respectively.
-Te membershio function taking values in [0,11 can be computed

follov':s:

thuH
b; (a)C ni ,.h (a) +-F

-ere H- is the set of hyperplanes defining the region i (having cardi-
n-L~t IAT ]) and m5 has the following form (Figure 2):

1 if Xh > !h and signh,(a) =1
n (U) -1 if Xh > Ih and signh (a) = -1 (2)

signj(a)xh/ih otherwise

Other choices can he made for the computation of the membership func-

ions, e.g. the form adopted in [5].
The fuzzy classifier can be implemented as a neural network that

exp'ots the fuzzy set structure and allows for efficient implementation.
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Figure 3: The Fuzzy Neural Network Classifier

Figure 3 illustrates the neural network that implements this approach.
It consists of three layers such that connections exist between successive
layers. The number of nodes in the first layer is equal to the number q
of hyperplanes that define regions. Each first layer node computes the
value of the function ma for every input pattern using equation (2). The
second layer contains as many nodes as the number r of regions. The
output of each node of this layer represents the membership value of
the pattern for the corresponding region as computed in equation (1).
The connections between nodes of the first and second layer associate
regions with their supporting hyperplanes and assume the values Vih

defined above. The last layer embodies nodes which correspond to the
set of p classes. The connections uji between the second and third layer
take binary values, such that uji = 1 if i is a region of class j and
uji = 0 otherwise. Each node of the third layer computes the degree to
which the input pattern fits within class j. The function that performs
this computation is the fuzzy union of the appropriate region fuzzy set
values. This operation is defined for each of the p classes as

r

cj = max[ujpb&(a)] (3)i--1

3 LEARNING AND CONSTRUCTION

Consider a set A of training patterns. The learning algorithm creates
a division of the feature space by appropriately constructing regions.
Each region is defined by hyperplanes that are successively created to
separate neighboring regions of different classes. Implementation of the
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below scheme requires the definition of the appropriate data structures
for holding all the information necessary during the construction.

At an initialization step, the -first two training patterns considered
(which should be of different classes) become the sites of the first regions
which are originally separated by a hyperplane (the perpendicular bisec-
tor of the segment joining the two sites). These regions will be restricted
in the sequel as new sites are created.

During learning, each training pattern ak is presented once and the
following general step is performed.

" First we compute the values of the membership functions bi(ae),
as defined previously, for all existing regions i. Then we find the
regions whose membership values exceed a given threshold value 0
(0 < 0 < 1), which is generally taken high (typically, greater than
0.7).

o If all the regions meeting the above criterion belong to the same
class as the presented pattern ak, no further action is taken.

" If one or more of the selected regions belong to classes different than
that of pattern ap, then the latter becomes a new site and its region
is constructed by drawing bisecting hyperplanes between this site
and its neighboring sites of different classes. No hyperplane is
created between the new site and sites belonging to the same class,
thus allowing -for overlapping. The neighboring regions of the new
region are successively determined by applying a simple adaptation
of standard techniques used in the creation of Dirichlet tesselations
by incremental insertion of sites [3, 4].

" The new site acquires its region by winning territory from the
regions of its neighbors (belonging to different classes). As some
of the already presented (non-site) patterns may be contained in
the affected regions, it should be checked whether such patterns are
now included in the newly created region. Thus, these patterns are
successively examined and if they are contained in the new region
they create their own new regions by winning territory from the
latter, following the procedure applied in the previous step for a,,.
Obviously, this construction of new regions need not take place for
all such points, since several of them may be covered by each newly
created region of the correct class.

4- EXPEPRLMENITAL RESULTS

"We have studied the proposed fuzzy neural network classifier on a variety
of difficult classification problems. We have tried to select databases
whose instances are defined on a high-dimensional space so that the
applicability of the Dirichlet tesselation approach on such problems could
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be evaluated. In addition, some of the data sets were noisy containing
hard examples so as to illustrate the operation and performance of the
fuzzy neural network classifier. To evaluate the effectiveness of our model
we have mainly compared it with the fuzzy min-max classifier [9].

The first data set is the Johns Hopkins University ionosphere database
which is a collection of radar data. The ionosphere data set consisted
of 351 feature vectors described by 34 continuous valued attributes with
two decision classes (either show evidence of some type of structure in
the ionosphere or not). The data set was divided into a training set
of 200 examples that were used to adjust the network hypeplanes and
convex polytopes, while the remaining 151 examples were applied to the
constructed network structure to estimate the performance of the pro-
posed fuzzy neural classifier. In all of our experiments we trained the
network for certain 0 values and then computed the percentage of correct
classification over the test set. Best results were found for 0 = 0.75. For
this parameter value the network consisted of 127 cells and the success
rate was 97%. On the other hand, using the same data set to train a
fuzzy min-max neural network classifier several experiments were con-
ducted for different values of 0. The best classification rate obtained was
95.5%

The second data set we used to train and test our fuzzy neural clas-
sifier was the Fisher's Iris data. Iris data is a collection of 150 four-
dimensional featute vectors in three separate classes, 50 for each class.
We considered a training set and a test set of size 75, each of them con-
taining 25 examples of each of the three iris classes. After a series of
experiments using different values of the parameter 0 we found the best
classification rate 97.3% for 0 = 0.75 in which we obtained 22 polygon
cells. For the fuzzy min-max classifier the best classification rate for the
same data set was exactly the same [9].

We have also used the James Cook University Thyroid gland database
in our model. Thyroid database is a collection of 215 feature vectors
consisting of 5 continuous attributes, such that the vectors belong to
three classes. Any of these three decision classes defines a prediction
of a patient's thyroid to the class of euthyroidism, hypothyroidism or
hyperthyroidism. The database is divided into 150 instances of first
class, 35 instances of second and 30 of last class. We used a training set
of size 100 while the remaining data set (size 115) was used as testing
set. Best performance was obtained for 0 = 0.8 (34 polygon cells) with
classification rate 94%. Training and testing the fuzzy min-max classifier
network with the same data sets we were able to achieve a success rate
of 90.5% using parameter value 0 = 0.082 (60 cells).

It must be noted that in all the experiments the choice of the value
of the parameter 0 was not very critical with respect to the success
rate as was the case with the fuzzy min-max neural network. There
were intervals of 0 values where the rate remained the same and only
the number of the hyperplanes and the convex polygons being created
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were different. Besides, while the value of 0 was increasing the network
structure (hypeplanes and cells) was reduced, and so we were choosing
the maximum 0 value of such intervals so as to achieve the least network
architecture with the best overall success rate.

5 TREATIPLG DISCRETE ATTRIBUTES

The model of fuzzy neural network based of Dirichlet Tesselations consid-
ers as basic assumption that all attributes take continuous values. Thus,
we are able to map the pattern space corresponding to each class to a
number of regions (convex polygons) by creating perpedincular bisectors
(hyperplanes) between sites of different classes. Nevertheless, when the
data set consists of both continuous and discrete attributes we cannot
treat the discrete features in the same way, and so it is necessary to find
another mode of operation.

Suppose that D, nD= lDl and C, nrc = C1 denote the set and
the number of the discrete and the continuous attributes respectively.
Let also DJ be the domain of each discrete attribute j E V. A n-
dimensional pattern a = (al, a2, ... , a,) having both types of attributes,
consists of continuous features aj for j c C and discrete aj C Di for
j E D. Each polygon i is described by providing the proper hyperplanes
with respect to the continuous attributes and moreover a set of attribute
values Dij gC D for discrete attributes j E P. It is obvious that the sets
Dij must be crisp, i.e., an element either belongs to a set (membership
value is 1) or not (membership value is 0). Including the above analysis to
the computation of the membership function of a pattern a to a polygon
i, equation (1) takes the following form:

1 1 1+

hEH,•D jED

<here a- denotes the subvector of a containing only continuous attributes
and ms(x) is the membership function corresponding to the crisp set S.
It must be noted that if a new input pattern ak is contained in a cell i
of the same class, i.e., no creation of new cell takes place, the crisp sets
D..; are adjusted as follows: D7JCU = Doid U akj.

6 CONCLUSIONS

WVe have introduced a new model of fuzzy neural network classifier by
representing fuzzy sets through a suitable partition of the solution space
into a number of convex regions following the principle of Dirichlet tesse-
lations. This type of network has the advantage of fast one-shot training
and is veery efficient for hard pattern classification problems as indicated
by lhe experiments. Further research is focused on the introduction of a
learning component for adaptively determining good parameter values.
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Dynamics of Assocrative Mernory

V7ii7th a Sef= consisteent Nolse
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Bucharest-Magurele, Rornania

Abstract

The Glauber dynamics of magnetic systems has been ex-
tended to the case of neural networks with a general odd re-
sponse function. We have derived a set of recursion relations
for the overlap parameter, noise average and noise variance
taken as macrovarnables of the process describing the dynam-
ics of associative memory. The retrieval process has been
studied then for a hyperbolic tangent transfer function by the
self-consistent signal to noise ratio method. It has been taken
into account the fatigue effect of the real neuron. The phase
diagrams of the retrieval process reveals an enhanced storage
capacity for a certain set of parameter values.

I kntroductior

The neural network models of associative memory are dy-
namical systems with associated attractors to the cognitive
events. A very well known example is the Hopfield model [1,2]
successfully carried out by Amit et al. [3] with the equilibrium
statistical mechanics tools. The dynamics of neural network
v..ith general response function is much more difficult to treat
than equilibrium properties because there is no general frame-
work corresponding to the Boltzmann-Gibbs equilibrium the-
ory. Even the stochastic master equation of Glauber dynamics
have been considered only for monotonic transfer function of
hyperbolic tangent type [7,8].
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Despite these difficulties the approximate treating of re-
trieval! process performed by Amari and Maginu [4] gave satis-
faction for various transfer functions [13-17], the only macrovari-
ables used being the overlap of the current state onto an em-
bedded pattern and the variance.

The aiim of this paper is to develope a, scheme to treat the
dynamics of associative memories with a general odd transfer
function including non-monotonic cases. In order to carry out
this task we have employed the method of Horn and Usher
[10] by using a. discrete time master equation describing the
time evolution of the network state. The rnacrovariables of the
process are: the overlap, the variance given through the signal
to noise ratio analysis [4] and the noise average. We here deal
with a. self-consistent extraction process of signal from noise
which finally yields to an enhanced storage capacity. This
mechanism of enhancing the storage capacity is different from
those involving the pseudo-inverse method [5] or the partial
reversed method [12].

The paper is organized as follows. In Sec.2 we develop the
general framework of the associative memory with a general
"transfer function [1.6] and successively we derive the general-
ized macrovariables recursion relations together with the time
dependent probability and the discrete master equation. In
Sec.3 we study the retrieval process of an associative mem-
ory having a, simple hyperbolic tangent output function by
following a self-consistent signal to noise ratio method. The
conclusions are discussed in Sec. 4.

2 Associative Memory Dynamics

The dynamics of the neuial network describes the change
Of variables in time. Let us consider a neural network of
A two-state neurons -(? = 1._ ) which inter-
act through the couplings T,_, given by the Hebb rule J._.
v = Q: .. The input-output function f sets the relation-
ship between the neuron's new state S.(t+i) and the previous

163



h I t

Ft 1! fl; 1-/ fTp t1 ; w7.

catuI l eta ,I 'h ro] a e introduced the oddr,.n-oo

*~~~~ us- iaua io ther ~etn ucto e

a s fl c co s ant a ii ci th i tbole whichjý johefi

Si r FK' Iil s~ h0 c)- -(ho reedeaionae ~
ahaIF I plýir p Pr rolýe ofc inhihirior11 foretan lnput

1 r) in sdec r a.> 1 rolc F oten ang erlnpi i-n tu ra h lf ela ,tion
I I _fl he 3FF C all dn eV-in dsretse-lstau .v etlg rl'e sum o hdin

-' r) sI 12 atn c i coe i s Fu at z o i rdc h

-t e f> lit C ~ 7j V I n ý Ci ' 1 -1 e 1 1)j ~ ai), n (le)

la p'l 31 01iap t o ni il 'S- 1rt h loa fit v" I I til qo

F i i F ýU ý(i 6efc iise l coin os i th gnaTto n~aise

9 3 Oipo~llCTt D" an1)d ail output picpcr-
J0K' FOIJos1i1io elti ering L

1641



N,ý(t) + aSS(t), with a the memory loading rate. In order
to include the fatigue effect given by the threshold contri-
bution [14] one takes the following recursion relation for the
noise term N (t+ +) =, Ai(t)+ c&(t + 1), with A < 1

Using the notation m = i1, the overlap parameter becomes
• (t + 1.) 1 frn(t) A ( t)), through rnultiplica tion
by 'I'- and statistical averaging.

Because the function f is an odd function in input, the
factor V = :L1 can be moved into the argument for a class of
input-output functions. (For exarrple in the case of f(x) =
tanh(ax)g(x•) we get. f,(rx) = tanh( r)g(x), g(x) being an even
function.) The -new expression of m.(t + 1) reads

m(t + 1) ={lf(() + (N1t)). (5)

Let us denote the value • N,(t) at location i by z and assume
this value distributed with the probability P(z, t) given by
[10]

P(z, t) 1 ( t)( - ); (6)

this probabi]ity allow us to write Tn(t + 1) as alt integral equa-
t io n

mn(t + 1) =dP(z. t)f(m•.(t) + .(7)

The value of z at location I changes in one iteration to
Az ± I with the probabilities

T((t) ) = I[ + f(()+ z)],

T Z 1 -I f( (t)+)] (+)

extended to the general odd inl)ut-output function. T'hes,
relations give us the discrete master equation as a recunrsion
relation

z - (I z -- ý
"P(z, t + 1 -) = I[7TI(rn(I), I 7.. A)

+ T ,m t), - - ... )P ( .... t ]. ( •
16' A
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Wince the most important featiures of the probability distribu-

Uion a re the average ( and standard deviation, let uis replace
P(zt) by an ex pression which contains these values and can
be easily mauipulated

1. 1
P(z,t) = •(z, -- r:(t)-~ u,(t)) + -6(z - ((0) + a,(t)). 10)

Rep)lacing the master equation by its frst two moments, i.e.,

expectation values of z and z2 we are led to the following set
of recursioii relations

MA t + 1) = -f(•n(t) - ((t) - J(t)) + -f(712(t)- ((t) + Cr(t)),

&t + t) = A((t) + carm(t + 1),

J7I't + 111 = A 2 ((T2 t± Aa(t) [f (r(t) - (7(t) - u(t))] +

Aa(t) [f(m•(t) - ((t) + a(t))] + 1 - i, 2 (t + 1). (11)

These expressions are different from those obtained in the
Amari-Maginu framework [4].

3 Analysis of Retrieval Process

The analysis of the retrieval process is carried out for a
hyperbolic tangent transfer function because the mechanism
responsible for the enhancemernt of storage capacity is not
caused by the nonrnoiotonic function as it was expected. Here
we deal with a self-consistent extraction of signal from noise
in a recurrent maner. The retrieval process exhibits for small
values of (7 more or less the same behavior as was obtained
by Arnari and Maginu [4]. The difference consists in the fact
that our model is one biologically motivated by the fatigue
effect and by the dynamical threshold incorporated in the
noiise recu rsion relation.

A more convincing argument that our model works as an
associative memory would be the attraction basin of a memory
state [16]. By plotting the time development of the overlap
parameter for T = 0.015, A = 0.1, a = 0.5 and initial overlap
values between m = 0 and m = 1, with increasing ratio 0.05
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in figure 2 was plotted the phase diagram T' = f(c:)

of the retrieval process showriug a. family of curves for A =

0,0.1,0.15,0.2 and 0.25. Each curve gives the separation
bonundary between FM phase and th.e pararmagnetic one. in-
creasing the A parameter to 1. the boundary approaches to 0.
the area of FM phase in o,-- - T coordinates is practically van-

ishing. Thus, the fatigue causes the reducing of associative
mernory perform arices,

4 Conclusion

In this paper we have extended the Glauber dynamics
Ltom ma.guetic systems to the case of neural networks [6] with
genera.] odd response functions [122-14]. The set of recursion
lelations of Horn and Usher [10] was extended to the macro-
scopic variables describing the dynamics of associative merrm-
ory retrieva.l process in the self-consistent signal to noise ratio
framework. We have solved the equations (1.1) for a hyper-
bolic tangent transfer function and one have plotted the phase
diagrams showing the boundary between the FM and pararn-
a.gnetic phases. Our phase diagrams of the retrieval process
reveals an enhanced storage capacity of t -, 1 when temper-
ature T -4 0 and the fatigue vanishes. Finally, a, continuous
time evolution set of overlap equationls for ru0onm1iorfotone nieul-
rons were analytically derived. The biological relevance of
nonmonlotonic firing rate was pointed out by Horikawa [18].
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RECURSIVE NONLINEAR IDENTIFICATION USING
MULTIPLE MODEL ALGORITHM

V.Kadirkamanathan
Department of Automatic Control & Systems Engineering
University of Sheffield
Mappin Street, Sheffield SI 4DU, UK
visakancgacse.sheffield.ac.uk

Abstract. In this paper, the multiple model algorithm is used in
deriving recursive algorithms for the identification of nonlinear sys-
tems. The radial basis function (RBF) networks with only linear
weights requiring estimation combined with the Kalman filter algo-
rithm forms the essence of the identification algorithm. Multiple
networks are used to identify the multi-modes of the system under
a Markovian assumption, the model estimation and selection being
carried out on-line. Both, 'hard' and 'soft' competition based esti-
mation schemes are developed where in the former, the most prob-
able network is adapted by the Kalman filter and in the latter all
networks are adapted by appropriate weighting of the observation.

1 INTRODUCTION

The problem of learning multiple modes in a complex nonlinear system is
increasingly being studied by various researchers [4, 10, 5, 2]. The use of a
mixture of local experts to model various modes of a system has been de-
veloped and applied to learning control by Jacobs and Jordan [4, 5], and a
conditional mixture density approach is adopted by Bishop [2]. The devel-
opment has centred around the problem of model identification from a given
set of block data, the model likelihood dependent on the input to the net-
works. A recursive algorithm for this static case would mimic the iterative
procedure required in the block estimation schemes, the recursion being an
approximation [5].

In this paper, we consider dynamic systems - developing a recursive algorithm
is difficult for the reason that the mode transitions have to be detected on-line
whereas in the block estimation scheme, search procedures allow detection of
the optimal transition point. However, unlike in the other modular network
schemes, the algorithm developed here does not use the mixing coefficients
or data conditioned prior model probability. The modelling of the multiple
modes in a nonlinear system is carried out by radial basis function (RBF)

0-7803-2739-X/95 $4.00 © 1995 IEEE
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can be chosen from a priori knowledge and estimation is restricted to a subset
of those outlined above. In functional interpolation, the number of basis func-
tions K is taken to be equal to the number of observations N and mk = x,
for n, k = 1, ... , N. The width parameter rk is also selected a priori leaving
only the estimation of linear coefficients. Also, the number of basis functions
can be chosen to be independent of the number of observations, such as in
on-line estimation, and their parameters pre-selected. Typically, the centre
parameters are chosen randomly to lie within some bounds on the input space
and the width parameter rk based on the centre nearest neighbour distance
[12]. Alternatively, for on-line estimation, the RBF centre parameters can be
assigned on-line to be a subset of the input observations with growing net-
work schemes [6, 7, 9]. The RBF networks are used for their property that
having chosen appropriate RBF centre and width parameters mnk, rT, only
the linear weights w need to be estimated for which fast, efficient and optimal
algorithms exist.

3 RECURSIVE IDENTIFICATION

Let the set of input - output observations from which the identification is to
be made, be denoted as,

2Ng= {z, I n ~ . . N (5)

where, ZNr includes all observations upto the Nth sample and z,. describes

only the nth input - output observation,

zn = {(X,Yn) I X, E:Myn (6)

Let the underlying process generating the input - output observations in a
nonlinear system be given by,

y =f*(x) + (7)

where 77 is the noise with unknown distribution and f*(.) : ?M • R is the
unknown underlying nonlinear function that needs to be learned or estimated.
For the system described by (7), under the assumption that the noise 77 is zero
mean Gaussian and under the assumption that the chosen model can approx-
imate the underlying function arbitrarily closely, the probability distribution
p(zn]p, Al) is Gaussian as well, ie.,

exp R IY,, - f(x,;>p)I}
p(z-, p, M) (2_7r)iR (8)

This is the likelihood of the observation z, for the chosen model AM, which
in our case is the GRBF network, and model parameters p. The vector
gn = [gi(xn), ... , gK(x,)]T and R0 is the variance of the noise 17. A further
assumption made is that the observations are independent and identically
distributed so that the likelihood of the observation set is,

N

p(ZNIP, MAr) = f- p(z, p, M) (9)
n=1
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Off-line identification schemes estimate the optimal model parameters by
maximising this likelihood, or equivalently, minimising the log-likelihood
which in turn becomes equivalent to least squares identification.

Considering the RBF network with pre-selected RBF parameters mk, rTk, for
1 1 . K, the parameters that need to be estimated are the linear weights
If we assign the prior probability distribution for the model parameters

p(;vL.AA) to be Gaussian with mean w 0 and covariance matrix (positive defi-
nite) Po E EKx , Bayes law,

PAv<ZN!, M) = P(. [, M)P(w7M) (10)
p( " I M)

combines the likelihood and the prior to give the posterior probability dis-
tribution P(wiZNv, M) for the parameters which is also Gaussian and given
by,

Z ) p ( - v) TP l-} (11)

The term P(ZNj,[1) is known as the evidence for the model A4 in the obser-
vations Zlv. The final estimate for the weights are wNv.

For on-line or recursive estimation, the Bayes law relation becomes,

p(,;,1, A/l) - p(z•wM, -_w(,Av,_, M) (12)P(Z"1Z-,-, M) (2

and the above equation is applied recursively for n = 1, . . ., N. Under
Gaussian assumptions as outlined above, the Bayesian approach leads to the
Kalman filter algorithm as the on-line optimal estimator [3] for the model
parameters w. The Kalman filter equations are the following:

-Ten =--- -y -- _ gn. (13)

R- = R + g Tp__gn (14)

I - RS - jiPnign (15)
vwr, = vwn-i + enkn• (16)

P - (17)
e- is the on-line prediction error based on which the correction to vv is made.
k_ is known as the Kalman gain. Rn is known as the innovation variance
(see (18)). In this formulation, the Kalman filter estimation of the model
parameters is equivalent to the recursive least squares form. In order to
ensure continued adaptation a random walk model is introduced whereby the
ternm Q07 is added to (17), as in [6], [7].

Using the Bayesian derivation the evidence term, is given by,

p ~ z 5 ~ M , Z e) e p lRj e , 1 2 }( )

(2w) 1 RnjC
The above equation shows that the evidence term used in Bayesian model
selection fil] is computed recursively, but for the different priors R 0 , PO sam-
pled by the multiple models. This is also the likelihood of the n'h observation
given the model A/4 and the past observations Z 5 _.
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4 RECURSIVE MODEL SELECTION

The use of a single neural network for identification is based on the assump-
tion that the chosen network is appropriate to approximate the underlying
function and that the noise assumptions are valid with the relevant param-
eters, such as noise variance being known. In cases where the above fail to
hold true, the use of multiple models provides an improvement at the expense
of increased computations. Multiple Kalman filters with the multiple model
algorithm [1] being used for estimating the states in target tracking where
the underlying model for the target is linear but nonstationary, is such an
example.

In the case of neural networks, the use of multiple networks can overcome
the limitation of having to pre-select the number of basis functions and their
parameters, by using several networks with varying sizes and parameters.
It allows for the selection of appropriate basis functions on-line to a limited
extent, similar in spirit to the off-line approach based on the Bayesian criteria
adopted in [8]. Furthermore, different choices for the unknown noise variance
Ro, the prior weight parameter covariance P0 and the random walk model
parameter Qo can be made allowing a wider search for the underlying model.
The multiple model algorithm can be viewed as an on-line model selection
scheme using Bayesian statistics.

Let the total numbef of neural networks or models used be H. Applying
Bayes law gives the following relation:

p(MhlZ,) = P(zIMh, Zn-)P(MhlZn-) (19)

which can be computed recursively for n = 1, .. . , N. p(zlMh, Z,._1 ) is the
likelihood given in (18) and p(MAhIZ,) is the posterior probability of model
MAh being the true underlying model amongst the chosen H models, given
the observations Z,. The term p(z, IZ,- 1 ) is the normalising term given by,

H

P(Zn I =Zn -1 E p(Zn Mh, Zn.-i)P(MhIZn -1) (20)
h= 1

Since the quantities en and R, necessary for the computation of the term
p(z•IMh, Z,,- 1 ) are obtained from the Kalman filter estimator, all the terms
on the left side of (19) are known once initial prior probabilities for models
are assigned, for example as,

1
p(M hZO) = p(M h) (21)

The above algorithm (18), (19) combined with the Kalman filter estimation
equations is known as the multiple model algorithm [1]. Amongst all the
networks that are attempting to identify the underlying system, the identified
model is the one with the highest posterior probabilityp(Mh 1Z,7) at each time
n, and hence can vary from time to time, and predictions are based on this
most probable model.
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H•ARD APND SOFT COMPEjTITONT

One form of nonstationarity commonly found in systems is multi-modality.
For example, the speech signal can be viewed as a concatenation of signals
from quasi-stationary modes or states such as phonemes undergoing transi-
tions at various time instances. The multi-modal system is represented as,

(rc,) + if n {[ ,, ], [.n .}

fY(:) + if , n E (22)

1i if u if

,77hnre n ! [ :: ] is the first time-interval during which the lth mode is

determining the behaviour of the system (i stands for initial f for final). To
be general, the same mode can become active again in the future during a
second rime initerval [n2 ,2 ] and none of the time intervals overlap. Un-
der this description of the multi-modal system, the task of identification is
to estimate or approximate the underlying functions fl(.), f2•(.), .-. , f7-)"
This is made difficult by the need for each model to represent each mode
or state individually and hence the model parameters have to be estimated
on observations pertaining to that mode. This can easily be done if the
mode transitions are knowrn a priori, which in general is not the case. Hence,
detection of mode transitions must also be made along with the model esti-
mation. In block estimation or off-line learning, Levin [10] demonstrated how
an additional switching input is used to model a hi-modal system where the
s-:,:c•mg input signal is jointly estimated with model parameters iteratively.
If'h modular network scheme developed by Jacobs and Jordan [4, 5] makes
use or a gating network that chooses an expert network to model individual
modes. Both, block and on-line estimation schemes are used to determine
the relee-ant parameters in the expert network scheme, but it is derived for
sta-c systems.

To ia.... "ate the on-line identification of multi-modal dynamic systems, a first
order "i arkov assumption is made for the mode transitions. Given that at
te time instant n - 1 the given mode is j, it is predicted under the above
ass__ Dtion that the probability of the mode at time instant rn being his the

H
ans".•ion probability Pýj, W#ith H modes, T Pe=: i.

h=l

The preEiched probability of the mode being j at time n therefore is given by,

p-p.P (.A IZ Z- -Pj(4 1 Zi) (23)jif

This can be vievwed as the prediction stage of the model selection algorithm.
Tiven the observation z,, the correction is achieved through the multiple
ri-,,oe] . sl°o.ithnm of (19) with the following modification:
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where modification to the prior and evidence has been made. Since the poste-
rior probabilities of each mode effectively indicate which mode is dominant at
each time n, changes can then be used as means of detecting mode transitions.

The detection mechanism allows two possible methodologies to be used in
model parameter estimation for each modes. In the first method, only the
model with the highest posterior probability undergoes adaptation using the
Kalman filter algorithm while all other models are prevented from adapting.
This is the 'hard' competition. In the second method, all models are allowed
to undergo adaptation with appropriate weighting to reflect the modelling
performances as measured by the posterior probability. The weighting scheme
adopted is to modify the noise variance parameter R0 at time n for the hth
model to become,

RO (n) = - (25)

This value is used in the Kalman filter equation (14) at time n for each model
h. It increases the apparent uncertainty in the measurement output according
to how unlikely the model is to be the true underlying mode, by increasing the
noise variance term of the Kalman filter algorithm. In fact, this is the same
weighting that will be achieved in the maximum likelihood iterative estima-
tion procedure, the weight being the posterior model probability conditioned
on the data. This is a 'soft' competition. While hard competition assumes
mode transitions to be instantaneous, soft competition allows for transition
to take place over a time interval.

6 EXPERIMENTAL RESULTS

The experiments used a number of Gaussian radial basis function (GRBF)
networks with basis function parameters chosen randomly. The nonlinear
system chosen for the investigation is the quadratic map chaotic time-series,
where, the observations are generated by,

y, = 4 y - (1 - Yn -1) (26)

such that with x, = Yn-1, the underlying function f*(.) is quadratic.

Figure 1 shows the model posterior probabilities with increasing time and the
approximation error for each network over the input range x C [0, 1] for four
GRBF networks (Nets 1,2,3,4) with number of basis functions K = 3, 5, 10, 20.
The results show that the smaller network predictions are preferred in the
initial stages since their parameter estimates are less uncertain than for the
larger networks. The results also show that under similar identification perfor-
mance, smaller complexity model is preferred demonstrating the embodiment
of Occam's razor [11].

The multi-modal nonlinear system chosen for the experimental demonstration
is also based on the quadratic map and was used in [10]. The two modes are
given by the equations,

Yn = 4 Yn-1•(lYn-1) (27)
Yn = 1- 4yn-1(1-Yn-1)
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Figure 1: Uni-modal identification: (a) Model probabilities and (b) Approx-
imation accuracy (c) Actual and approximated functions, and (d) Absolute
prediction error (Netl +... +, Net2 x-.-x, Net3 o- -o, Net4 *--€, Under-
lying function o, multiple network scheme predictions *).

and the system undergoes mode transition after every 50 samples. Two GRBF
networks of size K 10 were used for these experiments.

0 .. l 1-,'1o 1n' 1 0 o, 1' l 0

Figure 2: Multi-modal identification ('hard' competition): (a) Model proba-
bilities and (b) Approximation accuracy. (c) Absolute prediction error and
(d) Actual and approximated functions (Netl - -, Net2 -, underlying func-
tion ... , multiple network prediction *).

Figure 2 shows that the mode transition is detected quickly and the appro-
priate hard switching takes place. The networks retain their approximation
to a certain degree at the end of mode transitions and the jump is due to the
nrst few observations of the next mode making the parameter estimates drift
a little before the switching takes place. it also shows that good predictions
are made from the hard competition multiple network scheme and that the
tw'o modes are identified by the RBF networks.

Figure 3 shows that the results for the soft competition case is similar to
the hard competition case for the example chosen. Since the hi-modal sys-
tem here undergoes instantaneous transitions, the hard competition is more
appropriate. However, the soft competition allows for transition over inter-
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Figure 3: Multi-modal identification ('soft' competition): (a) Model proba-
bilities and (b) Approximation accuracy (c) Absolute prediction error and (d)
Actual and approximated functions (Net1 - -, Net2 -, underlying function
• .. , multiple network prediction *).

vals, and it provides good results on instantaneous mode transitions as well.
The results demonstrate the successful operation of the algorithms on the
bi-modal nonlinear system used in these experiments.

7 CONCLUSIONS

Recursive identification schemes for nonlinear systems based on the multiple
model algorithm are developed in this paper. The neural network used is
the radial basis function (RBF) network in which the parameters that need
estimation are the linear weights. For uni-modal systems, the multiple model
algorithm is directly applied to the multiple networks that allow different
network configurations such as number of basis functions and RBF parame-
ters. This is similar to the problem of selecting a subset of appropriate basis
functions to approximate the underlying function. For multi-modal systems,
a first order Markov assumption for mode transitions is made to facilitate the
development of the algorithms. The transitions are detected using the poste-
rior probability of each model representing the observations. Two methods of
identification algorithms are developed, where once detection is made, esti-
mation of model parameters is based on either 'hard' or 'soft' competition. In
the former, only the mode with the highest posterior probability undergoes
adaptation by the Kalman filter and in the latter all modes are adapted by
appropriate weighting of the observation.

It should be noted that the mode transitions considered here cannot be pre-
dicted beforehand and is a random event. The model probabilities computed
based on performance over time. This is in contrast to the modular network
schemes of [4, 5, 2], where, modes or experts are identified based on the state-
space by the gating network and hence the transitions could be predicted. At
present, investigation into combining both approaches is being carried out.
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We consider a linear, one-layer feedforward neural network per-
forming a coding task under noisy conditions. We determine
the family of synaptic couplings that maximizes the mutual
information between input and output distribution. Optimiza-
tion is performed under different constraints on the synaptic
efficacies. We analyze the dependence of the solutions on input
and output noises.

INTRODUCTION

A feedforward neural network of a given architecture provides a cod-
ing of its input data. In this work we consider a one-layer linear network,
and we are interested in the network configurations (i.e., the structure
of the synaptic couplings) which are able to resolve as many features as
possible of the input data distribution, under noisy conditions. Finding
such "optimal" codings can be useful for both the statistical applications
of neural networks and the neural modeling of early sensory processing.
Works concerned with several aspects of this problem can be found in

[1, 2, 3].
The data, representing the environment, are generated according to

some probability distribution and sent to the network as its input. The
network updates its synaptic weights in an unsupervised way, according
to a given rule, possibly inspired by an optimization principle. Several
alternatives have been suggested. Oja [4, 5] proposed a Hebbian updat-

0-7803-2739-X/95 $4.00 © 1995 IEEE
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ing modiflied in such a way that the couplings can not grow indefinitely.
This rule produces synaptic couplings, between an input layer with N
neurons and an output layer with p neurons (p < N ), that converge to
values that span the same subspace as the p principal components of the
input data distribution [6]. However, the effect of noise in the network
is not considered. Sanger [7] has given a different rule that converges to
a solution with a similar behaviour.

An altetiiative method is to use optimization criteria based on infor-
ination theory. For instance it has been argued [1, 8] that the network
builds an efficient coding by minimizing the redundancy in the data,
a criterion that tends to decorrelate the output activities. A related
procedure, the infomax principle, maximizes the information that the
output has about the input [2]. Several authors [9, 10, 11, 12] have con-
sidered the maximization of the mutual information in a linear channel
vwith noise and, under some hypothesis, they exhibited a solution for
the optimal couplings. These works, however, leave several points to be
clarified, such as the details of the solutions and their stability, and the
role played by the differeint possible constraints imposed on the synaptic
c onfigurations,

In this work, ursing notions derived from information theory, we char-
acterize the optimal solutions for the synaptic configuration. In par-
ricular, we determine the family of synaptic couplings that maximizes
the mutual information between input and output distribution. This
optumizatieoni is performed under different assumptions on the allowed
synaptic configurations. We study analytically in detail the dependence
of rhe solutions on input and output noises in the case in which the in-
put distribution is gaussian. For this case we perform a rigorous stability
analysis of the solutions. A brief account of preliminary results in this
direction has been given in [13], while a fill account of the calculation
is given in f14i.

*TSI-d MODEl

On general grounds, an information channel, tiansforming an in-
put (source) set of units g- {•,..., N} into an output set V
{, . .1., I1 }, can be characterized by the mutual information I given
by:

I-( C) P (, og P d) ,
P(V)P(ý)

where we use the same symbol P to denote the different probability
distributions. For details about information theory see, e.g., [15].

We consider a situation in which the actual realization of the infor

i-ation channel is a neural modruile, as Figure 1 illustrates. The element
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P(Vý): output *h * f& * O*

P(V16): noisy channel

P(C): inf ...... tio so..urce 00

Figure 1: The neural network as information processor.

fij of the pxN matrix J connects the input unit ýj to the output unit V/;

for later convenience we define the N-component vectors _, i = 1, . . . p:
the elements of f1 are the connections Jjj, j = 1 ... , N, from all the in-
put units to the i-th output. We consider only the case p < N.

The input and output variables, ý and V, take on continuous values,
and we assume a linear transfer function for the neurons in the limit
of noiseless channel. In the presence of channel noise, characterized by
a parameter b, we assume that the conditional probability distribution
P(V ý) is the gaussian given by:

P(Vj1) =( rbp/2 exp -{ - 1= j ) 2} (2)

that gives a linear deterministic channel for b --+ 0. This expression has
to be modified if there is also an input noise. We assume that there is an
additive gaussian noise P in input, such that the input to the j-th input
unit is ýj + v•, with P uncorrelated with 0 < vj'j >= 0, < v >= 0,
< Viv, >= (bo/2)6bj. In this case (2) is replaced by:

P(vl ) 1
uiOrP det[blp + boJJT]

exp {- (V - J&) . [bl, + boJJT] 1 (17- J), (3)

where we have adopted matrix notation; 1P is the unit matrix of dimen-
sion p, and jT is the Nxp transpose matrix of J.
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W'e must make assumptions about the environment; we assume that
the input distribution is a gaussian, characterized by the correlation
matrix C defined by <•i~k >= (1/2)Cik. Since I will not depend on
< >, we also assume for simplicity < $ >= 0. Therefore we have:

1 exp (- t)(4)
dVtCC- e

Now the output probability distribution P(v), needed for the computa-
tion of I-, can be easily computed. Finally we obtain the result for I,
which is:

1= Ilog det.[bl + )(bt C)J('2 det [b!i, boJJT]

The base of the logarithm simply determines the scale of T; we can
therefore take the natural logaithm.

We limit ourselves to a discussion of the properties of the J con-
figurations maximizing I, focusing in particular on the effects of both
input and channel noise. We do not consider here any particular dy-
namics leading the is to the maxima. Several authors (see, e.g., [3)
aid references therein, and [2]) have discussed a possible biological rele-
vance of maximizing the mutual information in early sensory processing
pait %Vay s.

It can be easily seen that, if b __ 0, grows asymptotically (to a
finite value if b0 D 0 or to infinite if b0 0), provided the Js are al-
lowed to grow without limit. To cope with the general case, in order to
ionannize I, we need therefore to limit the growth of the Js; a possibil-
it, is to redefine the cost function of our optimization problem adding
a -penlty-" damping term: I - I - (p/2)Tr(JJi), where p is a
positive par~ameter: this added term can be generically interpreted as a
tendency of the connections Ji to "forget". Another possibility is to
in' pose a constraint on the is that prevents their unlimited growth; we

anaIyze the case in which a real constraint is imposed on the is, natmely

alotal constraint of the form 7_ 12 = o, where c is a constant. We
cac: theni have an indication on how the features of the optimal solutions
t!•at v find, depend oti the particular strategy that we choose to limit
L growt-hl of the Js.

xe v`il show few details about the calculations for the damped case,
1h in the case of the global constraint, we will only show the differ-

e1Ces Ira01 tile first case.
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For the damped case the function to be maximized is now:

1 det[blp + J(bolN + C)JT] 1
Iz-log -~pTr (jjT). (6)

2 det[bl4 + boJJT] 2

We note the important property that both _- and ± are invariant under
orthogonal transformations J -- AJ, where A is any orthogonal pxp
matrix. This means that the points corresponding to a given value of ±
cover an hypersurface in the Nxp-dimensional space of the Js, and that
they are connected by orthogonal transformations. We remark that the
transformations A are not rotations in the space of the N-dimensional
vectors Li, but act on the p-dimensional space of the columns of the
matrix J. This invariance property is used throughout all the derivation
of the results. To find the maxima of ± we first look for its fixed points,
and then, by a stability analysis, we determine which of these fixed points
are maxima. Each fixed point is actually an hypersurface, due to the
invariance property.

Fixed Points

The fixed points are given by the following matrix equation:

8 - Pu- = .o (7)

Computing the derivative of I we find, after some rearrangements:

JC = (bl +- boJJT)pj +- jCjT(bl +- boJJT) 1 Jbo +- jCjTpj. (8)

Now define F as the subspace of RN spanned by the vectors J, i =
1, . . p at a fixed point (the dimension of F is so far unspecified); then
consider an N-component vector X C FP and right multiply (8) by X;

from the fact that J1 = 0 by definition, we obtain:

jcC = o Cc r (9)

This means that F- is an invariant subspace of C; since C = CT this also
means that P is an invariant subspace of C. So our first result is that
at the fixed points the vectors A lie in a subspace spanned by (a so far
unknown number of) eigenvectors of C.

It can be proved that, at the fixed points, the same orthogonal trans-

formation simultaneously diagonalizes the symmetrical pxp matrices jjT

and JCJY . Therefore, in any hypersurface in J space where I is an ex-
tremum, there is a point (apart from permutations of the vectors I),
where the matrices jjT and jCjT are both diagonal; we can loosely say,
for short, that when we are at this point we are in the diagonal base. We
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continue the study of the properties of the extrema of ± in the diagonal
base. In this base jjT - D and JCJT ' D1 , where P and D1 are
diagonal pxp matrices; we denote their elements by: DPi - b0 fi, and

-ZJ - 613 a,- Notice that fi J 2 in the diagonal base. We right mul-

tiply (8) by jH, and write the resulting equation in the diagonal base,
to obtain:

P 1 = (61p -IL boEP)pP + P1 (b1, +I boD)f-boDP pP1 P. (10)

It can be proved that in the diagonal base the vectors J2 are eigenvectors
of C corresponding to eigenvalues Ak(1 ), and that ai = Ak(i)fi. The value
A'(1) is so far arbitrary, the only condition being that different i are
associated to different k', since jj T is diagonal. The eigenvalues of C,
all positive, are numbered such that A, > A2 > ... > Avy > 0. Now (10)
gives an equation for fi. For each i, this equation always admits three
real solutions; one is always zero, one is always negative, and the third
is positive if:

pb < Ak(i); (11)

if this expression is not satisfied also the third solution is negative. Since
negative solutions for fi are not acceptable, we are left, for each i, with
a choice between the solution fi = 0 and the positive solution, provided
(11) is satisfied. The appropriate choice to be made is determined by
the stability analysis.

Stability Analysis

We give in the following an outline of the procedure, omitting the details
of the heavy algebra involved.

To determine, among the fixed points, the maxima of t, we perform
a stability analysis. -More precisely, we write the matrix expression

/J=a7= - PJ' (12)

where AJ is a finite variation of J in which each element Jij changes by a

quantity equal to the component of the gradient of - on the axis labeled
by (i, j) of the Nxp-dimensional space of the Js. In (12) we substitute
for J the generic fixed point plus a small perturbation, i.e., denoting by
JO the generic fixed point solution, and by a the perturbation, we put
C JO + a. We linearize the resulting equation keeping only the terms
of the first order in the perturbation; we then project the variation of
C onto the possible directions in C space and verify in this way if that
fixed point is stable. As before, we work in the diagonal base.

We multiply (12) by a complete base of the N-dimensional space,
thus exhausting all the possible directions in the J, Nxp-dimensional
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space. For convenience we divide the process in two steps: first we
project onto a complete base of F' and then onto one of P. At the end
of this analysis we can determine which of the fixed points are stable.
In the next subsection we show the characteristics of these stable fixed
points.

The Stable Fixed Points

We define the number m, determined by the number q of eigenvalues of C
which are greater than pb: if q < p, then m = q, otherwise m = p. Above,
studying the generic fixed point, we have seen that, in the diagonal base,
each fi is associated with an eigenvalue Ak(i) of C; besides, if pb < Ak(i)
we have the freedom to choose fi = 0 or fi > 0, otherwise only the
solution fi = 0 exists. The stability analysis show that the stable fixed
points are those for which:

In the diagonal base, m vectors fI are associated with A 1,..., Am,
and the corresponding fi are positive; if m < p, the remaining
(p - m) Ji are zero. All the other J configurations where _T is
maximum can be reached performing an orthogonal transformation
J - AJ. As a consequence, in a generic base, p - m vectors Ji
are linearly dependent on the other m. The conclusion is that the
vectors Jt, i = 1,...,p lie in a subspace F spanned by the first M
eigenvectors of C.

It has to be noted that when the channel noise b increases, higher and
higher principal components are destabilized: in the diagonal base more
and more vectors J• go to zero, while in a generic base the decrease of
dim F shows up by the decrease of the number of linearly independent
vectors. In particular, when pb > A1 , all the vectors ft are zero. The
input noise b0 is not relevant in the determination of the noise thresh-
olds, but only in fixing the value of ±, in particular at the maximum.
Another point to be noted is that in the diagonal base the output dis-
tribution p(V) is factorized, and the non-zero Jt produce at the output
the projection onto the principal components of the input distribution.

In Fig. 2 we show, for the optimal network, in the diagonal base, the
output distribution p(V) and the conditional distribution p(V16.

The Global Constraint

Now the function to be maximized is I itself, but under the constraint
Zij JY1 o -, that means that the sum of the square moduli of the vectors

J1,..J., is constant. We notice that the expression which is to be kept
constant can also be written as TrJJT; from here we see that, like 7,
this quantity is invariant under any orthogonal transformations A. This
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cide7 e--ds eti thie ,alue of 6: it can be coniputed that the dim-ensionl

tsr f b < (h)p A, E 1  Increasing be one crosses succes-
" "heF Lfit shohds at v1iiichu the dimension of' the space increases

0-, o-lNLi to tNIe valuLe p



To summarize, the maximization of IT under the global constraint
leads to J configurations that have the same general properties as in the
damped case. The main difference is in the determination of the noise
thresholds, where the dimension of F changes. Now both the channel
and the input noise, b and b0 , are relevant.
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Abstract-
Discrete-time models whether linear or nonlinear, often implicitly use the shift operator
to obtain input regression vectors. It has been shown recently that the significantly better
performance can be obtained in terms of coefficient sensitivity and output error by using
alternative operators to the usual shift operator. These include the delta and gamma opera-
tors. In this paper we introduce second order pole-zero operators which have more general
modelling properties than those previously considered. We provide some observations
on the behaviour of the operators, considering representational issues and convergence
chacteristics in particular.

1 INTRODUCTION

In neural networks applied to signal processing applications, various approaches have
been proposed to combine the usual linear filtering methods with the nonlinear function
approximation capabilities of neural networks. A common method is to simply intro-
duce regression vectors 1 defined as u(t) = [u(t), ... , u(t - M)]T for some input signal
u(t), to a network architecture such as a multilayer perceptron. This is equivalent to
prefiltering the input data by linear filters. An extension of this approach is to allow
linear filters to be used in each of the synaptic connections in all layers rather than just
the input layer. [3, 4, 33, 34].
Agarwal and Burrus [1] proposed the use of an alternative discrete-time operator to
replace the shift operator. Their idea was to introduce the delta operator defined as 8

2- where A is the discrete-time sampling interval. Since then, this operator has been
considered in linear filtering, estimation and control [13, 21, 22, 32].
Recently, de Vries and Principe [10, 11], have proposed an approach to modelling time
series data, where instead of a simple time-delay input window constructed by means
of the usual backward shift operator (defined as z- (1 ) • (I - 1)), first order filters,

called gamma filters, have been proposed. The gamma operator is defined as y
(z - (1 - c))/c.
An extension to the basic gamma operator by introducing complex poles, was given by
[29]. In this case, the second order operator is derived by considering the usual gamma
operator and replacing a shift operator function and feedforward gain within the gamma
operator by the initial gamma operator function. This results in an operator having a
zero at z = 1 - c, and a possible pair of complex conjugate poles. This operator is
defined as

cl [z -(1 - cl)]
2 (1)2 CS[z (1- C)]2+ C2 I

'The term regression vector is used in system identification literature to denote the input vectors.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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where 0;, i = 1,2 are parameters of the 72 operator. The results in [29] indicate
some success with this method, however it was observed that a multimodal mean
square error surface may occur in some modeling situations. In order to overcome
this, a subdivision search strategy was proposed, allowing the operator coefficients to
be trained first, followed by the neural network, and then finally training all weights
simultaneously.
in the "/2 operator proposed in [29], while there may be a complex pole pair within
the unit circle (if (1 - cl) - c2 < 1), there is only one zero which lies on the real
axis. This means that the operator is only capable of producing either low pass (for
o < c] < 1), or high pass filtering characteristics (1 < cl < 2).
In this paper we introduce first more general second order operators. Some pertinent
observations are made on the behaviour of some of operators which are capable of
providingll a more general transfer function characteristic (viz, bandpass, bandstop,
notch).
It is useful to define some criteria for selecting one operator over another. A first-choice
foa this has been the improvement in mean-square output error (MSOE) obtained by
using the operator in a learning algorithm [6, 13, 26, 27]. The precise reasons for
the improvement in MSOE improvement still require some elucidation. It is known
that a large eigenvalue spread will lead to poor convergence of parameters in on-
lie estimation, while significant off-diagonal elements can cause a convergence to a
non-optimal point [15].
in the development in [15] it was assumed that the operators contained no adaptive
pa-•maeters. However, in this paper, we propose to consider the implications of using
(i) a range of possible operators, specifically, we are interested in the use of second
order p-ole-zero operators, and (ii) allowing the operators to have parameters which
We may require to be adjusted on-line. Further, we are concerned with issues in
identification of nonline'r: dynamic models, which consists of some linear dynamic
:nnut (prenrecessing) stage, i.e., this is usually a time-delay input window, but in our
case vye centre the discussion on using alternatives to the shift operator; followed by a
neural network structure and possibly additional dynamic structures.
in hi nave- we consider representational issues of the operators and some initial
conside-ations of the convergence chacteristics of the operator models. The issue
of persistence or excitation of the input signals is raised, and how it relates to the
coo a-cenca :of nonlinear neural network models. We indicate conditions under which
-pLrsistnce of excitation applies to linear dynamic parts of neural network models.
'7 stress at this point that the analysis presented here is not generally applicable
te s 3 em-el network structures, but rather a subclass of models which includes
br-as dynam-c (in particula-r, input preprocessing) sections. The general problem of

c-se e a1 exitation for neural networks has not been discussed widely, ad there
DI v i '. l ttleown results.

Cn oc he major aims of this paper is to show that there is a need to consider carefully,
;rrzpicaions operaiors have in the overall convergence of the linear dynamics in a
ra-:4 S a esul ss r-e strictlr true fore linear system, however our conjecture is that
h-as se prinCiples will apply to nonlinear systems which contain linear "sub-models"

- r-cr -unap-am-crlcizn'rion to adequeately model some unknown system.

- 0PPF IZ u,(::DL" Aa-7917LTURZS
-. 7-72.D' T,'7]' -'D,'e E L j

_C setion, ah des ethe ne-r netwvork architecture and associated operators
- --S -- h" -ennraiiyes the oseal dusere-tie-,e l oneer mving

'an 'is .giver h

-= )0x'(i (2)
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M

G(v,9) = Lbiv-
/=0

(3)

where v-1 is a generic operator. This operator may be defined as v-= {z= , 5-
7-' - }, which are the shift, delta, gamma, and gamma(2) operators respectively.
The forward equations for the model are

M

•)(t) = Lbiui(t) (4)

where we define

,,o(t) X (t) (5)
Uti(t) A-- _-1 Ui -1 (0) (6)

Thus we can define the regression vector ii(t) [u(t), Vu(t),..., -u(t)]T.

2.2 Nonlinear Multilayer Models
A nonlinear model may be defined using a multilayer perceptron (MLP) with the v-
operator elements at the input stage. This model is termed the v-operator multilayer
perceptron or MLP(v) model. An MLP(v) is defined in the same manner as a usual
MLP with input vector u(t).

2.3 Operator Preprocessing Stage
In this paper we focus on the effects alternative discrete-time operators have on the
covergence of model parameter estimates during learning. The model parameter es-
timates we are primarily concerned with in the first instance are those of the linear
dynamic sections in the model. Our conjecture is that in terms of obtaining a good
nonlinear dynamic model, it is necessary to properly model these sections in order to
obtain a good nonlinear model, and that the issue of persistence of excitation normally
considered for linear model estimation also requires consideration in this framework.
It is known, (and described in more detail later), that model convergence is strongly de-
pendent on the conditioning of the covariance matrix R, of the regression vector u(t).
The regression variables we consider are obtained from the output of the operators2 . In
particular it is shown that the spectral characteristics of the operator V(z, 0) influences
the conditioning of Rn. For that reason we propose a general operator capable of
providing arbitrary location of poles and zeros. A general operator model to do this is
defined by

NHI (z)z - 0 )(z - 13) (7)
S' (Z - ai)(Z 01;e)

where a, /3i are the complex poles and zeros. Interestingly, a version of this operator
has been proposed in the context of frequency transformations for digital filter design
[9], where the transformation is all-pass and the unit circle is mapped onto itself. In
our development, we will primarily consider the special case where i = 1.

2 As a means of simplifying our approach to convergence in both the operator and other possible linear

dynamic section in the neural network, we assume white gaussian noise input to the system, and consider a
nominal regression vector consisting of only the operator outputs.
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The operator structure we consider therefore is defined as

It - Z 2 +_]_ 7.CzZ +} 7 2

z2 + VP Cp z + r"2

vwhere rp, r, are pole and zero radii respectively, while the pole frequency and zero
freqoencies are given by wi = arccos (ci/ - 2)i, i = z, p. In contrast to allowing only
low pass or high pass spectral characteristics as is the case for the gamma(2) operator,
this po!e-zero operator allows arbitrary positioning of complex conjugate poles and
zeros and can therefore implement bandpass, bandstop, notch filters etc.

3 OBSERYAT¶ONTS ON THE BEHAYMOUR OF THE OPERA-
TORS

31 Algebraic Operator Constraints
The following observations are made concerning the pole-zero characteristics of the
operators under consideration. These results are relevant in understanding possible
convergence problems discussed in the following section.

0.1 A single - 2-operator is not capable of producing complex zeros. However, com-
plex zeros may be obtained in the overall model through the interaction of the
operator elements.
By inspection, in the 72 -operator transfer function in (1), it can be seen that since
c1 E 1?, the zero must be on the real axis.
Is there a relationship between the real axis zeros, and the poles ? This question
is answered in the following observations.

0.2 The -12-operator has a single zero given by Z = (1 - cl), and poles given by P1,2
(I - cl) ± jci c/2. Thus, the poles and zeros are constrained to move identically
in terms of the real axis coordinate.

0.3 The poles and zero of the p2-operator are constrained such that increasing cl
causes a decrease in the position along the real axis of the poles and zero, but
simultaneously causes an increase in the imaginary axis coordinate according
to the square root of the coefficient. Adjusting c2 affects only the imaginary
component of the poles, however this results in a simultaneous shift in the
radius and angular position of the poles, where r = v!(1 - c2 )2 + Ic2, 0

arctan( -1j-). Coefficient adjustments therefore affect the poles and zeros in a
nonlinear and nonsymmetric manner.

0.4 The poles of the 7z-operator will occur in a complex conjugate pair for c2 7! 0.

0Z The angular frequency and radius of the p-operator poles and zeros are inde-
pendently adjustable. Thus, learning algorithms are able to perform pole-zero
updating directly if required, rather than coefficient updating.

0.6 Second order p-operators can be structured in a coupled-form [17] to allow low
sensitivity between coefficients and pole/zero positions.

0.7 The p-operator may be constrained in numerous ways in order to obtain specific
frequency domain characteristics, e.g. a notch filter is obtained as

tl-1-2 + cpz + I

Prnotch z 2 + 7ýpgpZ +[ c r2 (9)
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It is possible to make the following observations about the notch operator in Observation
0.7:

0.8 Complex conjugate pole pairs are defined for the P, otch-operator, when -2.0 <
c < 2.0. A pole on the real axis occurs when -2.0 > c > 2.0.

0.9 A pn ot0 h-operator which models poles on the real axis will be nonminimum phase.
Thus the Pinotch operator model is likely to have difficulty in learning inverse
models of systems which have real axis poles.

This is shown as follows. Consider the system polynomial B(z) = z2 + cz + 1.
We wish to find conditions of nonminimum phase for c i 2.0. Let the zeros
of B(z) be given by iB = 0.5(-c ± /c 2 - 4.0). Hence let the zero radius in
the complex plane be r, where r2 = 0.25(c2 + Vc - 4.0). Thus, for c > 2.0,
r2 > 1.0 and the property is evident.

Viewing the root locus plots of the operators as a function of the operator variables would
indicate these properties more clearly. There are fundamental differences between how
the y2-operator and the f-operator model zeros on the real axis. It would be of interest
to understand how this difference relates to modeling systems which require a pole on
the real axis.

3.2 Convergence and Persistent Excitation Conditions
We now move our attention to considering the convergence aspects of the operator
models. For a multilayer network with an input time delay window, it can be easily
shown that the time-delays and weights going to each node in the first layer form
separate FIR (finite impulse response) filters Gj (z) j = 0, ... , N, from the input signal
x(t) (uo(t) = x(t), to the outputs Yj (t), the activations of the N1 first layer units.
As in the usual system identification approach [19], we make the assumption that the
dynamics of the model must approximate that of the system sufficiently well in order
to obtain a good approximation. This may not be strictly true due to the action of the
nonlinearities in the network, and the magnitude of the incoming signals. However for
the purposes of our discussion, we restrict the analysis to this "tighter" assumption for
the following reasons.
In the course of this analysis, we assume that there may be dynamic filter structures
either within the network structure itself (e.g. such as in locally recurrent networks),
or occuring after the output of the network. Further, it is likely that there will be some
neurons in network structures which do operate in the linear regions for some periods
of time whether due to the input signal amplitude, or the input weights.
Thus, we stress that for instances where the neurons are driven well into the nonlinear
range, the considerations we present in this paper are not necessarily directly applicable.
We conjecture however, that in order to model nonlinear dynamic systems appropriately,
it is necessary to consider the implications of persistence of excitation associated with
the linear portions of the overall model. We consider that the assumption that the
nonlinear components of, for example, an MLP model with dynamic input structure,
and possibly some dynamic output structure, will cause there to be no need to admit
persistence of excitation conditions to the overall model convergence results, to great
to make at this stage. In fact, it is has been observed in the course of simulations of
dynamic locally recurrent networks, that in many cases there are units which perform
only linear processing [8]. Thus there is evidence to suggest that in modelling "block-
oriented" nonlinear systems (i.e. constructed of discrete linear and nonlinear functional
blocks) [7] using dynamic neural networks, it will be necessary to consider convergence
aspects in this framework. The principles of analysis presented here can be regarded
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A relationship can be found between the power spectral density S(W) of the operator
transfer function H(z). It can be shown [18] that

X(. = ...__(R_) < .. (~) (13)X(R• = ,A,(R_•) -< S_,(H(w))

Thus, the covariance matrix R,,, can become ill-conditioned from certain types of
operators are used. For example, if H(z) has zeros on or close to the unit circle, or
Smin -+ 0, then Ami,, ---+ 0, hence X (Ru ) --+ oo.
The following property has been derived by Stoica [28] which is particularly relevant
here.
Property P.3 [31]
For y(t) = H(z)x(t), if H(z) has zeros on or close to the unit circle, then the M x M
covariance matrix RYY will be ill-conditioned for large values of M [28].
Although the above conditions apply to all linear operators, there may be some advan-
tage in using second order pole-zero operators, in the sense that complex conjugate
poles and zeros can be directly and easily modelled. This direct control over the fre-
quency response characteristics means that we can better manipulate the eigenvalue
spread of the covariance matrix, given some particular input signal. This would allow
better convergence properties to be obtained.

4 IMPLICATIONS OF THE OBSERVATIONS

In this section we present examples of the implications of the convergence analysis
properties described in the previous section. It is possible to foresee problems that
could arise in either of the following circumstances:

1. The incoming signal is not persistently exciting.

2. The operators have zeros at locations on the unit circle which cause the operator
output signal ui (t) to lose persistence of excitation.

3. Either or both of the above conditions cause the covariance matrix to become ill-
conditioned.

Example 1.

Suppose we have an operator Hi (z- 1) with small S,,i,, or the incoming signal resulted
in a small S,,.in,, then this will cause poor convergence. From this we conclude that
some caution may need to be exercised in using filters for operator structures resulting
in this condition.
Example 2.

Suppose we have a number of cascaded operators Hi(z- 1) (i=O,1,...M) each of pos-
sibly differing filtering characteristics associated Sm.i,n. If one operator k has a small
S,mi,, then this will result in a "flow-on" to all succeeding operators, resulting in poor
conditioning of all R,,,,, for i > k.
Example 3.
Suppose a criterion other than persistence of excitation is used to select Hi(z), e.g.
mean square output error of the model. We raise the question of whether it is possible
to lose persistence of excitation while adapting the operator parameters. This issue
does not appear to have been considered directly in the literature.

Our interest is in introducing a broad set of principles which can govern the use of alter-
native discrete-time operators. The preceeding discussion indicates broad conditions
which need to be placed on the design of operators.
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lifhas: been obevdthat poor learn ing imay occur when using an on-line estimation
a:=oithmn to model ARMAX (autoregressive moving average exogenous input) systems
114] vihen the zeros of the input transfer function approach the unit circle. Friedlander
pre-,csd an inmprovement to the recursive maximum likelihood learning algorithm
osee.whr a prefictrvwas used to pull the roots towards the center of the unit circle
using ,al approachs which relcsthe usual polynomial A(z) = F aptt' byA

a. ( ,~whee cis a rolling factor. As c decreases, the roots of A(z) move
rediall ':nv/ars towards the origin 4 [114]. 'We propose that Fri edlander's method could
also be applied to Lhe operator models by introducing either

Q)a -rcgul'rnizqstanop term into the update equations for the operator parameters, or
(H), bounds oni the rositions that roots.
hiP tlris case, w.,e prlopose an alternative nolIc-zero operator,

2 + ýCP -(14)

w,;h ere aF- zp , Z ps and pz, pp are pulling factors which wve seek to minimize.
Thuss. a cost criterion mov be defined as

J(t) -7 KE e tj + 7,P+ q (15)

flsý'lmO11 oa f pa, p, will also be required during operator pararneterization. Perfor-
ME:cce of' this approbch is currently being explored.
n nehxt, section, we nresenat numerical exarnples inidicating the difficulties eneoun-

je7_,fi7 ters7 of the ill-c-onditioned- nature of the covale-,nce matrices R,,,,.

St AUCPIAEXAMPLES

A s a7' Th~ic'tiern a the variation in conditioning that can occur in the covariance mo-
toe, e show,- the va-tiation oy(?, 0 )ag~ainst variations in the operator parameters

>c1). Far the, purposes of this experiment, we assumed an FIR input stage, with
1'ý 3, arTC use results obtained over lCQO sample points.
araple presentedý indicate the largeý variations in conditioning possible within

o- one.ratlor structure. Further, it is evident that sometimes quite small changes in the
~tar, parameters result in large changes in the condition number of the covariance

Mal:' -a_ of interest to note that the, pale-zero model allows much smaller eigenvalue
spca for, some noaraineter regions than any of the other operators. By comparison, a

sif oerto obta~ined an eigeovalue spread of 1136 for the same experiment.
Caculestions which we have identified are:

Hm-7c t se'lect operators which result in the smallest possible eigenvalue spread ?
Ca e choose LI(s) such that any learning algorithm will always seek' to obtain a

tT- n- asnsfonnmatian which se~eks to minimize the covariance matrix eigenvaliue
ST-2a ? Further, is it possible to always choose an operator structure such that the
ý' ryNnvalhue spread is small1? In othervwards, is it possible to guamrantee that such models

'ox I 'always exist ? Further w/ork is recuire~d in this are-a, to understanding these issues
in the contexýt of neural networks.

4 >ý02 ihas, this is in itself, a speccial case of an alternative operator.
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Figure 1: Condition number for data covariance matrix /ouo versus varying operator
pole parameter: (a) Gamma Operator (vary co), (b) Gamma(2) Operator (c, = 0.8,vary
co), (c) Gamma(2) Operator (vary co linearly, vary c1 to maintain constant pole radius
r = 0.9), (d) Pole-Zero Operator (rp = 0.5, wp = 0.37r, r, = 1.0, vary J).

6 CONCLUSIONS

Recently, novel input structures have been proposed to replace the usual time delay
(shift) operator commonly used to map time-varying signals to neural network archi-
tectures. Various advantages have been demonstrated for operators such as the Gamma
operator [12] and the delta operator [21].
We have proposed a general second order pole-zero operator structure allowing complex
poles and zeros to be independently adjusted. Various aspects of the operators have
been considered, including an initial analysis of persistence of excitation conditions
applicable to the (linear) input preprocessing stage to a neural network model. Results
have been presented which indicate that the choice of the operator structure is vital if
proper convergence is to be obtained in the linear dynamic sections of the model. Some
advantages of the pole-zero have been indicated.
In future work we propose that it would be of some interest to closely examine how
the operator parameters can be adjusted while maintaining well conditioned covariance
matrices. This would enable us to exploit the variable parameters in the operators, but
with some possible trade-off. It would also be particularly interesting to consider this
development in light of the type of error surface analysis performed by Principe et. al.
[26].
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Abstract

We consider the problem of how to incorporate prior knowl-
edge in supervised learning techniques. We set the problem
in the framework of regularization theory, and consider the
case in which we know that the approximated function has ra-
dial symmetry. The problem can be solved in two alternative
ways: 1) use the invariance as a constraint in the regulariza-
tion theory framework to derive a rotation invariant version
of Radial Basis Functions; 2) use the radial symmetry to cre-
ate new, "virtual" examples from a given data set. We show
that these two apparently different methods of learning from
"hints" (Abu-Mostafa, 1993) lead to exactly the same analyt-
ical solution.

1 Introduction

Lack of examples is very often responsible for poor performances of learning
algorithms. In many cases it is difficult, if not impossible, to collect additional
data, leaving us with unsatisfactory solutions. However, it is often the case
that not only the examples but also some prior knowledge on the learning
target are available. Examples of prior knowledge are smoothness, invariance
with respect to transformation groups (such as rotations or reflections) or
information about time and/or space scale. Most of the existing learning
schemes do not make use of prior knowledge, and therefore provide subopti-
mal solutions that do not fully exploit the amount of information available.

One major contribution to this topic has been given by Abu-Mostafa
(1993) who developed a methodology for integrating different kinds of "hints"
(prior knowledge) into the usual learning-from-example procedure, and re-
lated them to the well-known concept of VC-dimension (Vapnik, 1982). Abu-
Mostafa considers, among other things, the case in which the function that
has to be learned is invariant with respect to certain transformations. In this
case he argues that the "hints" can be represented by new examples, gener-
ated from the existing data set by applying transformations that are known

0-7803-2739-X/95 $4.00 © 1995 IEEE
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1o leave the function to be learned invariant. This approach can be applied
independentlv of the learning technique that is used: the learning technique
remains the same. and the data set is augmented with new, "virtual" exam-
pies.

\n alternative approach consists in leavitig the data set unaltered, but to
use the prior knowledge to modify an existing technique to ensure that the
approxiienated function has the desired invariance properties. This approach
is clear!v related to the creation of virtual examples, butt it is not obvious
that provides the same result.

In the following we apply this alternative technique to the case in which
ode prior knowledge consists in knowing that a function is radially symmetric.

The approximation technique wc consider is Radial Basis Functions, because
it can be derived as the solution of a fttnctional minimization problem, ill
which prior knowledge about the smoothness of the function is already used.
The presence of a functional to be minimized makes easy to introduce the
additional prior knowltedge as a constraint over the domain of' the functional,
aId will let us derive ain analytical solution, that is as simple as in the Radial
Basis Functions case.

Interestingly enough, the solution derived in this way is exactly the same
that is obtained if the prior knowledge is used to create virtual examples,
shovwing that the creation of virtual examples is the "right" thing to do, and
providing another step in a rigorous mathematical analysis of the technique
of virtual examples. Before describing these results we first briefly review the
regularization theory approach to function approximation.

2 Regularization Theory and RBF

Suppose that the set D = {(xi, y-) G R' x RI-Y__ is a random, noisy sample
of some multivariate function h. The problem of recovering the function
h from the data D is ill-posed, and can be formulated in the framework
of regularization theory (Tikhonov, 1963; Wahba, 1990: Poggio and Girosi,
1990). In this framework the solutinti is found by minimizing a functional of
the form:

INO

Hy]) = (f(Xi) _ p,)2 +AoCl. 1

where A is a positive number that is usually called the reglrarizalion parate-
ler and o[f] is a cost functional that constrains the space of possible solutions
according to some form of prior knowledge. The most common form of prior
knowledge is sm oohtiess, that, in words, ensures that if two inputs are close
the two corresponding output are also close. We consider here a very general
class of rotation invariant smoothness functionals (Girosi, Jones and Poggio,
1995). defined as
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OVI] ] dsWS

R, d If(s)
where- indicates the Fourier transform, 0 is some positive radial function
that tends to zero as lisIl --* o (so that _'_ is an high-pass filter). We consider

here for simplicity of subsequent notations the case in which G (the Fourier
transform of C) is positive definite, rather than conditionally positive definite
(Micchelli, 1986), and therefore is a bell-shaped function. It is possible to
show (see the paper by Girosi, Jones and Poggio, 1995, for a for a sketch of
the proof) that the function that minimizes the functional (1) is a classical
Radial Basis Functions approximation scheme (Micchelli, 1986; Moody and
Darken, 1989):

N

f(x) ZciG(x - xi) (2)

where the vector of coefficients (c)i ci satisfies the following linear system:

(G + AI)c = y (3)

where I is the identity matrix, and we have defined the vector of output
values (y)i = yi and the matrix (G)ij C(xi - xj). Classical examples of
basis functions G include the Gaussian (G(x) = exp(-IIx 1

2)) and the inverse
multiquadric (G(x) = (1 + lIxH 2)-). In the next section we will show how
to embed the prior knowledge about radial symmetry in this framework and
we will derive the corresponding solution.

3 Regularization Theory in Presence of Ra-
dial Symmetry

In the standard regularization theory approach, the minimization of the func-
tional H[f] is usually done on the space of functions (D for which 0[f] is finite.
If additional knowledge on the solution is known, that can be used to fur-
therly constrain the space of solutions. If we known that the solution is a
function with radial symmetry, then we can restrict ourselves to minimize
H[f] over 1fNT7, where )Z is the set of radial functions. The problem we
have to solve now is therefore the following:

N

min H[f] = min Z(f(x,) - y,) 2 + AO[f] . (4)
fE4,n 1z fE4Dn*7 i=1

We now notice that any functions in 7R uniquely defines a one dimensional
function f* as follows
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circlc ofradius IxI,

H

oo

Figure 1: The basis function H(Hjxlj, Ilxill), for xi (2, 0).

is presented in figure (1), where we have set I1xill = 2. It is clear that this
function is a radial "bump" function, whose bump is concentrated on a cir-
cle of radius lIxill. Any radial section of this function looks like a Gaussian
function centered at 1x!lj, providing a local, radially symmetric, form of ap-
proximation.

4 Radial Symmetry and "Virtual" Examples

In this section we follow more closely the approach originally suggested by
Abu-Mostafa, and use the prior knowledge to generate new, "virtual" exam-
ples, from the existing data set.

Let D = {(xi,yi) C led x R}I= 1 be our data set, and let us assume
that we know that the function h underlying the data has radial symmetry.
This means that f(x) = f(R•x) for all the possible rotation matrices R0
in d dimensions. Here 0 is a d - 1 dimensional vector of parameters that
represents a point of id-1, the surface of the d-dimensional unit sphere. This
property implies that if (xi, yi) is an example of h, the points (R/ox, yi), for
all 0 E Ed-1, are also examples of h, and we call these additional points the
"virtual" examples.

Let us now consider a standard Radial Basis Functions approximation
technique, of the form (2). Suppose for the moment that the function is
invariant with respect to a finite number of rotations Ro!, . . . ,Ro. . Each
example xi will therefore generate a virtual examples Rolxi, ... HP, xi, that
can now be included in the expansion (2) together with the regular examples.
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Ri 'Is tvial to see th at, because of' the, itvari anece pro perty of/hI,Iie coefficients
of I i basis functions corresponding, to the viii Hal examples will he equal to
thie. cofhcients of the corresponding, oril gixal example. As a result, we have
th at eq. (2~) has to Ve replaced Ly

1(x ~ci G(x - Rsxj)
i=1z~ CA Uz

whe re xv.- havei defined 00 0, so tlat, R&,x = x. We now re lax- the as-
>tin-iiiion that the function is invariant with respecet to only a Finlite number
oretl o> aiid allow 0, to spanli the entire surface iThe equat ion above

it,_~et o repil-ace eq. (2) xviIti L followii ug1:I

J,( X) jc dQ (09) ((x -Rox,) (0

c/U z i 0 is the uniforin measure ovcer 'ý -l Using~ the Ilankcl repre-
sentation (6) for tIe radial fuinction G in eq. (10), the iiitegral over Sý'di cali

he prforn-iedc. and provides the result:

A'I

vhltre H ( xj 1--1) is gven lirecis(t lvle expression (8)! Froni this derivation
It is cleer that the basis function II (jx, x 1 xil) is aii iiifinite supierposit ion of
Gac~ussian, funictioiis, xwhose centers uiinfornlv cover tie su rface of the spldier
of ra lii-s Ix-1.

Tb v-e--ore creatiniovirtiial exanilples seemis to lie, iii a sense, tHe "ri~lit

thingj co do, leading to the same result. chat oiic g)ets froni the iiiore "prin-
cil cid' and sophi> icated approach of regulariz'ation tlieory. The appealing
feai--e of tie virtual exaniples techmnique is tlic fact thai, it can lie appliced 'in

vey cgenrc 1 cases. in which it, iiiiht lie limpossible to de rive anialytical results
as tHie oiii dlerivedl in section 23.

D A2ý Shaapk ExpJ~eymanat

A i atural qumestion to ask is how niuchi iniprovementii can lie expected by

aV ii'eninig Ilie data sei wxithx "virttual' examuiples. 2\ siiiilar question xvoule lie
tasl:. a> cou sidered hi- Abu-Mostafa ( 1993), wvhat is the VP' dimieiisioii of the

aporox'' xiiiou technique (7) once the prior knoxwledge is included. The case
co nsider seems to 1)1 already coiiillicated enough. since an infinite numbiler

of v crtiial exampiles cai lie generate d by each example, but, t his is clearly
not ii iiivaleii to liave aii infinite nuimier of examples, because tHie virtual

-D, oles flie oii a sphere aiid are not raiieoiiilv distributed. This is lal
aL difccit prob1lemi, aiid should lie studlied thueoretically aiue exhierienentally.
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We present here just one very simple example of how the technique works
and what kind of results we are looking for.

We consider a 2-dimensional case, in which the function to be approxi-
mated is h(x) = cos(JHxJJ 2 ). We used the standard Gaussian RBF technique,
and the corresponding technique (see eq. 7 and 9) that makes use of the
prior knowledge. An increasing number of examples, from 16 to 225, has
been generated by sampling the function h on a grid in the square [-1, 1]2.
The generalization error of the two techniques, computed on a test set of
400 data points also on a regular grid, has been plotted, in a logarithmic
scale, as a function of the number of examples (figure 2a). Notice how, in
particular for small number of data points, the two techniques differ in gen-
eralization error of orders of magnitude. Notice also that when the number
of data points becomes large the lower curve, the one computed using prior
knowledge, becomes extremely flat: we attribute this to errors encountered in
the numerical evaluation of the Bessel function 10 involved in the computa-
tion, that reaches values of the order of 10150, and would need a more careful
analysis. Although we have not addressed this problem yet, we do not foresee
major complications in doing it, and it should not become a limitation of this
technique.

In order to get a feeling of how much is gained by the use of virtual
examples we computed how many examples are needed for the two techniques
to achieve the same generalization errors. Let E 2(N) and E!(N) be the
generalization errors of the standard Radial Basis Functions technique and
the one with prior knowledge respectively. The equation

E 2(N*) = Ei(N) (11)

implicitly define N* as a function of N: N* is the number of data points that
are needed, with no prior knowledge, to achieve the same accuracy achieved
by N data points with the prior knowledge. Using linear interpolation to
approximate El(N) we evaluated N* as a function of N at a number of
points and reported the result in figure lb. For example, it takes approxi-
mately 45 data point with the prior knowledge to obtain the generalization
error achieved by 225 data points without the prior knowledge. Since 225/45
= 5, we could interpret this result saying that each example generates an
"effective" number of virtual examples equal to 4 (5-1).

6 Remarks

We conclude the paper with few remarks:
* One could wonder how often in practice one has to approximate functions
with radial symmetry. Probably not often, but one of the goals of this pa-
per was to give an analytical treatment of the problem of creating virtual
examples, and set the basis for further results, of more immediate applica-
tion. Although it has been already proved that creating virtual examples
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reduces the VC-dimension of an approximation technique, it is not obvious
that this is strictly equivalent to including the prior knowledge as a constraint
on the class of "admissible" functions, that also reduces the VC-dimension
of the learning scheme. We plan to consider more complicated cases, of
more immediate application. Many real world problems are characterized by
invariance properties (Poggio and Vetter, 1992): faces are (approximately)
mirror symmetric objects, handwritten characters maintain their identities if
their images are rotated, scaled or translated in the iniage plane. Although
these transformations are more coiiplex they all have the property of being
a group, and we plaii to exploit this property in more details.
* We should notice that in the case considered here we nsed the prior knowl-
edge as a "hard constraint", and force the solution to have a specific symmetry
property, hut we could also consider the case in which we only favor solutions
with that property. This can be done in regularization theory by considering,
instead of the minimization problem (4) the following:

AT

iiin Zfxi) - pi)2 + AJ)[f] + ou,0[.fi (12)
i=l

where /l'[f] is a functional that penalizes functions that are not radially syrri-
metric. This case has been considered by N. T. C'han (1995) in the one-
dimensional case, that is in the case in which the function is known to be
even. lie considered the choices:

<[f] dx (.(x) - f(-x))'

N

½L[1 Z f(xi)- J*(-x))i
i=1

The last case is a weaker form of prior knowledge, because the constraint is
enforced only at the data points, but in both cases the solution is of the form:

N N

1(x) = Z ci&(e -x) +LESbGx + ri)
i=1 i=1

and therefore consistent with the creation, for each example (xi, yi), of a
virtual example (-xi, yi).
a Since radial functions are, after all, one-dimensional functions, on( could ask
why not to use eq. 5 to state the problem in one dimension and use standard
regularization theory in one dimension. The reason is that we are ultimately
interested in computing a d-dimensional functional, whose smoothness prop-
erties are very different froni the smoothness properties of the corresponding
one-dlimensional function defined by eq. 5. Moreover, formulating the prob-
lem in) one-diniension would be useless in the case in which we want to enforce
only a "soft" constraint as in the case of the functional of eq. 12.
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c) It sh ould also be noticed that, it, has been possible to derive analytical resuhts
h -cuse ini tbe BRadial Basis Furnctionis t ecb~nique it is clear the role played by
the data points~, sinjce they explicitly appear in the approximating fnnction.
The same kind of analysis is not possible if the approximation technique is

> st Ii atd with Multilav er Perceptrons. or sonie other no imidirar approxima-
tion te~chnique, In which the depeindiinec of the solut ion on the locations of'
the dat a points is muchi m-ore involved and not known analyitically.
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Waltham, MA 02154 Piscataway, NJ 08855

ABSTRACT

A text-dependent speaker verification system based on Neural Tree
Network (NTN) phoneme model and phonetic weighting scoring
method is presented. The system uses a set of concatenated NTNs
trained on phonemes to model a password. In contrast to the con-
ventional stochastic approaches which model the phonemes by Hid-
den Markov Models (HMMs), the new approach utilizes the dis-
criminative training scheme to train a NTN for each phoneme. The
phoneme-based NTN is trained to discriminate the phoneme spo-
ken by the speaker with respect to those spoken by other speakers.
A weighted scoring method depending on the phoneme's ability for
speaker verification is used to improve the performance. The pro-
posed system is evaluated by experiments on the YOHO database.
Performance improvements are obtained over conventional tech-
niques.

1. INTRODUCTION

Recently, the speaker verification systems based on characterizing a speaker's
password as a sequence of concatenating subword units represented by Hidden
Markov Models (HMMs) has been investigated [11, 9]. The subword based
model was shown effective in speaker verification tasks for password of con-
nected digits or a randomly prompted sentence. In the previous study [7], we
have presented a neural-network-based algorithm for text-dependent speaker
verification. In contrast to using HMMs, the algorithm uses a set of concate-
nated Neural Tree Networks (NTNs) trained on subword units to model a
password. The discriminative training is performed in each phoneme model.
Thus each phoneme is modeled for the speaker with respect to other speakers.

* This work was done when the author was with CAIP center Rutgers University.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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The advantage of using subword models are three fold. First, using sub-
'cord models can broaden the application of a speaker verification system by
allowii;_g unrestricted passwords. Second, in a subword based speaker verifi-
cation syste~m, the discriminative training can he performed on each subword
cci:- The differences between rwo speaker can be discriminated only when
h'ur utterances are tine aligned. WVhen the speech waveforms corresponding

To rhe same context are aligned, the different way of pronouncing phonemes
i ,Y E7sp7eal!crs can be differentiated. Thirdý a scoring method using phonetic

- icc can be applied to the subword models. The phonemes -which are
5a!e 2r speaker discrirmnation shouold be emnlphasized, and those which are

'or oon lising should be suppressed.

In this paper, the phonetic weighting scoring method that combines the
cfidence ues comne out of the phoneme-based NTIN is described. The
Pro>n cc wevights are chosen to refelect the the phoneme's effectiveness in
speake•r doscriniccnation. To cvaluare the performance of this algorithm, we
ýoýnducted text-dependent speaker verification experimeints using the YOHO
database Experimental results show that tAle proposed hybrid method can
achieve better pcrfornanoce than that obtained by HIMl classifier.

2. PJDNEMVE-BEASED NEURAL TREE NETWORK

2o10 Neural Tzea Netvroric

The neural tree network (NIPN) [12] is a tree-structured classifier that com-
hines the properties of the feed-forward neural networks [8] and decision trees

[1]. The structure of the N\TN classifier is similar to a decision tree. Deci-
sion tree uses a thrcshold based on one feature dimension in each node to
ocs~uceinate feature vectors. In the NPN, the discrimination at each node is

nupleicnicted by a neuron that can be trained to have the ininhnum classi-

nica-coo error. IR has been applied to speaker verification [3], and shown to
achieVe better perforncance over conventional nmethods, such as Vector Quan-
Lccltiol (VQ), and MIvultilayer Perceptron (PIYLP). In this system. each speaker
Is niotdiJed by a binary NTN which is trained by the feature vectors of that

Sp-a 'er and the all the other speakers. During training, the feature vectors
of the sneaker are labeled '1', and those of the other speakers are labeled '0'.
Th'e NýTN 's recursively trained in the following way. Given a set of training
data at a particular node, the neuron is trained to split the feature vectors
cino t -o subsets that incinhicizes the classification error. These subsets are

slbksequently passed to children of the node. This algorithm recurrently pro-
ceeds n>til the subset contains the feature vectors of the same class, or the

rUc- th to the prespecified level is reached. The leave at the termiinal nodes
ar-- labeletl by the majority class, and the confidence measure of each leaf is
aiso corputed.
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2.2. Scoring Method of NTN Model

The NTN is a non-parametric model of the probability distribution of feature
vectors. It uses a number of tree structured hyperplanes to partition the
feature space into non-overlapping subspaces. In each leaf, a discrete posterior
probability, referred to as confidence, is derived as follows [6]. The probability
of class Ci in a leaf Ij can be approximated by the Parzen density estimate
formula [10]:

1j 1p(xjlCj) = 1- j- (1)

where kij is the number of samples of class Ci in the leaf ij, Vj is the volume
of the region enclosed by leaf ij, which can be canceled out later, and Ni is
the total number of samples of class Ci. The prior probability of a class Ci is
defined as:

) (2)

where M is the total number of class. Given a vector xj in a leaf 1j, the
posterior probability that the vector belongs to class Ci is defined as

Aci xj -- P(ci)p(xj I O (3
pC=1 p(Ci)p(xg I0 C)

Canceling the common terms, the posterior probability can be simplified to

P(C, lxj) = k(4)

The NTN score of an utterance is defined as the average confidence over the
whole utterance.

2.3. Training and Testing of Phoneme-based NTN

The phoneme-based NTN differs from the multiple-word NTN in the sense
that they use a different training data set. Instead of using all the words of
training data to train a large NTN, the new training algorithm only takes
vectors assigned to particular subword units in the training speech to train a
phoneme-based NTN. In training of a multi-word NTN (as that trained for
text-independent task), the clusters of feature vectors corresponding to the
phonemes overlap with each other severely. In NTN training, the classification
errors in higher layer may interfere the training result of lower layer. However,
the overlaps of the phoneme clusters which are difficult to be separated in
feature domain can be separated more easily in time domain. In our previous
study, it is shown that training the NTN with homogeneous speech data
instead of using all the data improves the verification performance [7].

To train the phoneme-based NTNs for a speaker, a speaker-independent
phoneme-based HMMs are first trained to perform speech segmentation. The
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parameters of a set of HMdMs a-re intially given by the bootstrap models,
then re-estinated by the training utterances in the YOHO database using
the Baunt-feich algorithm. For each training utterance, a composite model
s syvnthesized by concatenating phoneme models given by the transcription.

L the re-est-imation, all the utterances are segmented into subwords and
labeled by a Viterbi decoding technique based on the composite models. A
speaker-specific phoneme-based NTN is trained for each phoneme using the
subvord tokens labeled as this phoneme. The NTN trained for this phoneme
can pe:ovide the ability to discriminate between the speaker and impostors.

Duringr testing, tbhe utterances are first segmented by the concatenation
op i.I-e se bword models given by the prompted password. The subword units
--c thern Applied to the coreesponding uhoneme-based NTNs. The scores

0 r. caculated by equation (4), ;hich is described on above. The speaker
-er-ifieron systems using uhonerne modei havn the advantage that the testing

passwords are not restricted to fixed passwords. Hence, the security of the
J sen enIhanuce.

THr con-,en ionI! scoring methods of speaker verification, the final score is com-

p 6ed by averaging the score of feature frames over the whole utterance. It is
assmied Jthat the feat ire vectors of all the phonemnes contain equal abilities

o- (''scr natLnia speakcers so a score averaged over the whole utterance is

rsCd Lo re-nresent thie sneaker's characteristics. However, the effectiveness of
a no- against the other speakers by each phoneme might be differ-

enL.. Sance the vocal tract adopts widely different articulatory configurations
'2 ng te production of vowels, fricatives, plosives and nasals, thee average

-e1tre does not represent speaker's characteristics accurately [13]. In Savic's
a text-independent speaker verification system based on adaptive vocal
m odel -ys proposed. The speech was separately classified into speech

e tit.. repres ieting each broad phonetic category as belonging to the im-
o orso aas belonging to the true speaker. A conclusion was drawn that

"--ett-r performniance can be achieved by representing each phonetic category
D- F dir-'n,ýt model, and by making the final verification decision based on a
..-e e eontbinat.on of of scores for individual categories.

T o a enouer stu dy [14< a t ett-independern speaker erification systene

_ -a classifiers is described. The first stage consists of a speaker-
ot e etector trained to recognize a phonem nthat is mos t

-I-e orspeaer veri'ication. Th± classifier in the second stage is trained
rcogne t!le frames of speech from t-he target speaker that are admitted

S--CD' i tIne dector. Thue vowne_ /i/ is fouind to be the most effective
IL Ch•iara'eteain' sneakers, Turn -ovement was reported in a speaker

nif eoz erperiment -hat only consitiers thee phonenme /i/ in the utterances.

aporoa ch thypt applies phonetic we gb ng in calculating the sub-
s'-core is eDrOpose 6

,. As illust-rated in Figuere 1• th- score come out of
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Testing utterance .one"
Transcriptions ! w !,, n

segmentation by speaker-independent phoneme HMMs

phoneme 1 phoneme N

phoneme-based NTN phoneme-based NTN phoneme-based NTN/w/ /^ I/]

Score Weighted combination of score from frames

Sccore

Figure 1: Combining the frame scores with a set of phonetic weighting pa-
rameters.

Interspeaker

Prob. density intraspeaker
pdf

.............................................................

0.0 Threshold 1.0 NTN score

Figure 2: Probability density functions of intra- and inter-speaker NTN score
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Rank Phoneme Example Word F-ratio
1 eh seven 7.65
2 er thirty 7.02
3 ay five 6.98

4 ao four 5.83
5 uw two 5.25
6 ah cup 4.96
7 ih fifty 4.53

8 ax seven 4.12
9 ey eight 3.72
10 n one 3.42
11 r four 3.27
12 iy three 3.15

13 w one 2.84
14 v five 2.02
15 dx forty 1.86

16 s seven 1.78
17 k key 1.36
18 f five 0.66
19 th three 0.65
20 t two 0.35

Table 1: Average F-ratios of 20 phonemes over 30 male speakers

each subword NTN is multiplied by a phonetic weight which the speech frame
corresponds to. The phonetic weights are chosen to reflect the phoneme's
effectiveness in discriminating speakers, which depends on the its ability to
make correct decision in speaker verification. The classification performances
are directly related to the distribution of intra- and inter-speaker scores mea-
sured by the phoneme-based NTNs. The more likely a phoneme-based NTN
makes classification errors the less discriminative it is. In other words, a
phoneme is more effective in discriminating speakers if the phonemes spo-

ken by other speakers are distributed at widely different locations from the
speaker's phonemes in the feature space. For example, in two Gaussian dis-
tributed pdfs, as shown in Figure 2, the error classification probability is de-
termineid by the amount of overlap in the pdf of interspeaker and intraspeaker
distance.

The results of the previously stated studies show that the vowels are gen-
erally more useful for speaker verification than plosives, because the classifi-
cation error rate caused by plosives is larger than that caused by vowels. One
of the more effective measurement is the ratio of interspeaker to intraspeaker
variances, often referred to as F-ratio [15]. More specifically, the F-ratio of
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the NTN score for speaker i is defined as [4]

F. = (tii -- I'ij,zij)2  (5)a? + a?.

where uii and oii are the mean and standard deviation of the intraspeaker
scores, and the pij,i6j and o-ij,ij;j are those of interspeaker scores, respectively.
The F-ratio is used to measure the difference of two means normalized by the
averaged variance, which also reflects the ability to discriminate speakers of
NTN scores. In order to measure the discriminative ability of a phoneme,
the frame scores corresponding to this phoneme are used to compute the F-
ratio. Table 1 shows the average F-ratio of 20 phonemes over 30 speakers.
In general, the vowels are considered having more discriminative ability than
the plosives.

It is a common experience that some speakers are easier to be recognized
because their pronunciation of certain phonemes are particularly different
from others. The weighting vectors are determined so as to emphasize the
phonemes which are reliable for speaker verification. As we have discussed,
the vowels are demonstrated to be the most speaker discriminative phonemes,
and the plosives are the least. Therefore, the feature frames segmented into
vowels are weighted with higher values, and the plosives are weighted with
lower values.

In the research of speaker recognition, using a weighted cepstral dis-
tance measure has been proven effective in improving recognition performance.
Most speaker and speech recognition systems use weights in the feature do-
main [5]. This new approach applies the weighting in phoneme level, which
emphasizes theose phones that are effective in speaker discrimination.

Generally, two weighting schemes can be used in speaker recognition sys-
tems, which are speaker-dependent and speaker-independent weighting schemes.
The speaker-independent weighting scheme is used to determine a general set
of weights that applies to all of the speakers. The speaker-dependent weighting
scheme is to adapt the weights from speaker to speaker. In speaker identi-
fication, the speaker of the testing utterance is unknown to the system, so
it usually uses speaker-independent phonetic weighting. However, in speaker
verification, a claim to be a particular speaker was given in advance, so a
speaker-dependent weighting can be used.

4. EXPERIMENTAL RESULTS

The phoneme-based NTN approach and phonetic weighting scoring method
were evaluated by using the YOHO database [2]. The YOHO voice verifi-
cation corpus was designed particularly for testing text-dependent speaker
verification or identification systems. It consists of 138 speakers enrolled (106
males, and 32 females); for each speaker, there are 4 enrollment sessions of 24
utterances each, and 10 verification sessions of 4 utterances each. The testing
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Sn:J-ects sTanaced a wide range of ages, job descriptions, and edu cational back-
gromunds. Thlc speech is acquired by a high quality telephone handset but n ot

1-oucglZ_ a Leleohone channel in a real-world office environment. The syntax
iu i f t OHO database incorporates "combination lock" phrases, and

t!AC jphrases used -for enrollment and verification are different. The utterances
m YOKO 0r samnied at a rate of 8 kHz, and limited to a 3.8 kiHz bandwidth.

_0! 'lscmvn Using Rnoccarne-oasen] I>I-i7 ihluodals

Y I signaI is pre-cmphasized using a. first order digital filmer with pre-
en-_)itasis factor 007. The feature vectors are 12th order 'IFCCs extracoed
f secedI_ signal ovr a 25-ms wvindow every 10 mns throughout the utterance.

n ... T' hý__ HD/iT/hI and speeclh segmentation, the A IIFCC, A 2 B/IFCOC
eenerg ad a energy are argumented to each feature vector to

io--n• a K° dlorncesiocnal vector. in training the phonerne-based TIN, and
t only th 12t.h order M/IFCCs are used. The PLU is modeled by a 3-

1eftre >LLht LTLtl /i no srip between states. A total of 20 phonemes.
_S sho 1n I ' found enIogh to t -ranserihe the spoken numbers in

A0f• L --,

oevalu-e tic pe formance o0 te systemi working in the real world,
So -e• ,-a 1- erfation experiments should he conducted. In the

,---.e-, 7 3is. onl.yO sapnakers are enrolled in the system and phoneuw-based
..... arra'cnd for these speaker. Tihe other 58 speakers are cousiderej

as -_hich -e never seen in the trai•ing. Forty-eight utterances
12 .se m. each speaker and those of other speakers are used to train

s 1 krspcii phoennem NTls.

I-_c .se tng, each speaker is treated in turn as a clahnant. For each
- --. tt... -,ances spoken by speakers of the saonu ,ender other tican the
-- am curt o± claniant'so cohorts are selected as impostors. In other words,

t e cmoro se, of each speaker are excluded as impostors, and
i S no tesiliug h~Lwco speakers ofdifferent gender. This arrangement is

.aoxd an opt-._nstic hiss, and mnake the error estimation closer to what
_-e 1 -boun o - the real world. The miodels are trained to inhibit thie cohort

S -,"er. i cohort se- speakers are not excluded as impostors, they are
LO;e to h c,' ejctecd.

c lassifir i Equal Error Rate
I4 nttrs.(10s) 1 uttr42.5s)

ph mocoI NTN ! 0.62% 1.21%
! T iI_ 4 , 1.75% 2.01%

j
2 lJ 2: Spce io•n performance on YOH0 database (80 speakers,
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The utterances in the same session are used individually or connected
together for testing. The average length of each utterance is about 2.5 sec,
and the total length of all utterances in a session is about 10 sec. The scores are
cohort normalized with a set of the 5 closest cohort speakers, then compared
with a global threshold. A decision of acceptance or rejection is made after
comparing the cohort normalized score with a global threshold. The results in
Table 2 show that the phoneme-based NTN performs better than the HMM
both in single and concatenated utterances.

4.2. Experiments of Phonetic Weighting Scoring Method

Several experiments are performed to investigate the significance of speaker
discrimination of the subword NTN trained for each phoneme. With enough
data for training the phonetic models, the YOHO database can provide sta-
tistically significant estimation of the phonetic discrimination ability. The
subword NTN are trained as in the last experiments.

Two experiments were conducted to evaluate the effectiveness of using
phonetic weighting. Thirty male speakers in YOHO database were enrolled
in the system. The subword NTN were trained by the same procedure as
above. In testing against a speaker, all the other enrolled speakers are con-
sidered as impostors. The average length of each testing utterance is about
10 second. The NTN scores corresponding to each phoneme are multiplied by
the phonetic weights. The confidence measure of a utterance is given by the
weighted combination of these NTN scores. The results in Table 3 shows that
the phonetic weighting method improve the speaker verification performance.

classifier Equal Error Rate
without weighting 0.18%

Spkr-Dept. weighting 0.15%
Spkr-Indept. weighting 0.13%

Table 3: Speaker verification Performance on YOHO Database (30 speakers)

5. SUMMARY

We have proposed a phonetic weighting scoring method used to compute the
scores for the phoneme-based NTN classifiers. The new approach has been
evaluated by the te2 iependent speaker verification experiments. Since the
phoneme-based NTN classifier is trained with the discriminant error measure
for each speaker, it is shown to provide better discriminant ability than the
HMM classifier. The phonetic weighting scoring method is also shown ef-
fective for combineing the scors come out of phoneme-based NTN classifiers.
Performance improvements are obtained over conventional scoring methods.
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Abstract. The hybrid Hidden Markov Model (HMM) / Neural
Network (NN) speech recognition system at the International Com-
puter Science Institute (ICSI) uses a single hidden layer Multi
Layer Perceptron (MLP) to compute emission probabilities of HMM
states. This phoneme-based recognition approach was developed
for large vocabulary size continuous speech recognition. In this pa-
per, however, such a recognition scheme is applied directly to much
smaller vocabulary size corpora, such as the Spoken Language Un-
derstanding Numbers'93 database and the TI connected digits. We
report here on the development of small baseline systems to facil-
itate all future research experiments, and also on the use of these
systems for experiments in context-dependent hybrid HMM-MLP
systems.

1 Introduction

In earlier work from a number of speech laboratories (including our own)[1, 4,
8, 9], the Multi Layer Perceptron (MLP) has been used to estimate emission
probabilities for Hidden Markov Models (HMMs). The HMMs are used as the
underlying statistical model of speech for large vocabulary speech recognition
systems. Over the years, these networks have scaled up to 4000 hidden units
and over a million free parameters, trained on millions of feature vectors
calculated from speech roughly 100 times per second. As we and others have
expanded these systems, we have been pleasantly surprised to learn that the
rich and redundant training sets have permitted us to train the nets with
very few training passes; in fact, when our largest network was initialized
with weights to do phonetic classification from an earlier, smaller data set, we
sometimes only needed a single pass through the new data. Even without this
initialization, we only required a few passes through the data for these larger
problems, using a simple online form of back-propagation with a reiative
entropy error criterion.

0-7803-2739-X/95 $4.00 © 1995 IEEE
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iovever, despite this result, we have found that training for large corpora is
still too time-consuming to promote extensive experimentation with feature
extraction and other issues ,n acoustic modeling Even using fast specialized
hardware for this purpose, we often find that the data handling issues alone

lead to unavoidable delays in training that frequently add up to a week or
niore. Therefore, we decided that we needed to work with a task that was
mnruch smaller, but was difficult and representative enough of larger tasks that
we could generalize lessons learned from the smaller problems. This approach
also would require discipline, in that we would want to eschew particularly
specialized solutions to the smaller probiem that would not scale.

After some pilot studies with a database of isolated digits spoken over the
telephone (and originally collected by Belicore), we decided to use the "Num-
bers" task that, was being developed at the Oregon Graduate Institute by
researchers at the Center for Spoken Language Understanding (CSLET). It
is a database of natural numbers spoken continuously and naturally over
the telephone, and is reasonably difficult. Due to the moderate size of the
Numbers'93 task, we were able to perform a wide range of experiments with
context-dependent networks, resulting in good improvements for this task
ore: our standard context-independenc system. Some experimemns of this

mpe were performed previously at ICSI, but few variants were explored due
to computational costs for the larger tasks. In addition, in order to com-
pare our small vocabulary size recognition system performance with that of
other speech research sites [2, 8], a recognizer was developed on the TI con-
nected digits using the context-independent form of the hybrid HMM-MLP
approach.

Since vwe wished to use the techniques that we developed for large vocabulary
recognition for these tasks, interesting questions of downward scaling arose.

Perhaps the huge singie-hidden-]ayer MLP structures were only the province

of excre-nely large data sets, and smaller problems might not work well with-
ouc specialized structures designed with knowledge of the problem. Some of
the design choices made over the years for large vocabulary recognition tasks

(suck as Resource Management and Wall Street Journal) include:

o Cross-validation testv with 0.5o improvement threshold

.o <owering of learning rale (initially set to .008) by a factor of 2 when
this toreshold was not exceeded

o Stopping of trainiog when tdis threshold was not exceeded for a pass
.o . a reduclorl n learnin ra e

.o W'eIg ts ;nitiaized from a. network trained on TIMIT or NTIMWT

o s F a s e ar sigmoidal hdden layer
o cs0 of at: mou window of (typically) 9 frames
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"* Softmax (exponential of the unit's weighted sum normalized by the sum
of exponentials for the entire layer) used as the output nonlinearity

"* Stochastic gradient descent using a relative entropy error criterion

In this paper we discuss results and methods for connected digits and num-
bers, keeping the basic design decisions unchanged. We will show that rea-
sonable systems could be developed without any major design choices, largely
by scaling down the hidden layer size in the obvious manner.

2 Baseline System

The hybrid HMM-MLP speech recognition system we are using has the same
basic structure as described in [1]. A single hidden layer MLP is employed to
estimate the posterior phonetic class probabilities, which are then converted,
using Bayes' rule, to likelihoods for Viterbi alignment in the HMM framework.

The MLP and its training procedure were as described above. The 9-frame
input to the network yields an input layer of 153 units, where each frame
consists of 8 RASTA-PLP cepstra, 8 delta cepstra, and i delta energy features.
All input features for the network are normalized to have zero mean and
unit variance. These choices of inputs, network, and training regimen were
unchanged from our larger tasks (though we do use more cepstral parameters
for very large vocabulary read speech with wider bandwidth). For all tasks,
the MLP was scaled down from our usual range of 500-4000 hidden units to
200 hidden units. For context-independent recognition, the output layer has
61 units, corresponding to one unit per phonetic class. This is also what we
use for the larger problems, although in the case of digits and numbers many
of the phonetic classes will never be found in the training or test sets.

We are currently using a decoder called YO [9] that applies the standard
synchronous Viterbi algorithm. In our lexicon, single pronunciation word
models with repeated states enforcing minimum phonetic durations are used,
and they are based on the most likely TIMIT pronunciations. A null grammar
is used for the digit recognizers. For the Numbers'93 task, our language model
for the pilot experiments is a class bigram derived from the statistics of the
training set.

3 Training Procedure

In our experiments, we use Log-RASTA-PLP [5] as our acoustic pre-processor.
Each frame of the feature vector represents 25 msec of speech, with 12.5 msec
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overlap of consecutive frames. Log-RASTA-PLP was chosen for its robustness
to linear spectral distortions in speech signals that are often introduced by

communication channels. This is important in particular for the Numbers'93
database because it is a very realistic set of data that was collected over the

public-switched telephone network. However, we use some form of RASTA for

all of our tasks currently, large or small (except for some cases with artificial
read speech recorded oxer a standard microphone).

The training of the recognition system is bootstrapped from NTIMIT (Net-
work TIMIT), a database collected by transmitting the TIMIT database

speech signals over the telephone network. Even though the Numbers'93
corpus is phonetically hand transcribed, from past experiences we found that
it is useful to pre-train a neural network from a much larger data set and use

it to initiate our task dependent training. The Numbers'93 corpus has about
100,000 frames of training data, while ten times that number are available

from NTIMIT.

The first step in the training procedure is to perform a feedforward pass of

the data through a pre-trained NTIMIT net, followed by a phonetic time-

alignment of the new corpus using the Y0 Viterbi decoder. This process
estimates a set of preliminary target label for the training data. A new
MLP is then trained on this set of preliminary alignments. Using this MLP,

we reestimate a new set of target labels and so forth. For the training to
converge, three or four iterations of forced Viterbi alignment are found to be

sufficient. Within each iteration, an independent cross-validation set is used
to control the learning rate and to decide when to stop the training. As noted

previously, the details of the training heuristics are essentially unchanged from

the parameter settings that we used for training up systems with vocabularies
of 1000 to 20,000 words, with networks that had over a million parameters.

4 The Numbers'93 Context=dependent Exper-
iment

4.1 Database

As noted earlier, the Numbers'93 corpus is a continuous-speech database
collected by the CSLU at Oregon Graduate Institute. It consists of numbers
spoken spontaneously over telephone lines on the public-switched network.

These numbers are extracted from the addresses spoken by the callers of

CSLU's Spelled and Spoken Names Corpus (3]. The Numbers'93 database
consists of 2167 speech files of spoken numbers produced by 1132 callers.

We used 1534 of these utterances for training and development, saving the
remaining utterances for final testing purposes. There are 36 words in the
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vocabulary: zero, oh, 1, 2, 3,...,20, 30, 40, 50,...,100, 1000, a, and, dash,
hyphen, and double. CSLU has announced that this task, including a much
larger collection of spontaneously spoken numbers, will be made publically
available.

4.2 Context-Dependent Experiments

For the Numbers'93 database, other than developing a baseline context-
independent system, we also experimented with three context-dependent ap-
proaches: single state generalized triphone models, single-state triphone mod-
els, and multiple state phonetic models with generalized biphones. All three
approaches are bootstrapped from a similar baseline system as described in
Section 2, except that the generalized triphone and the triphone methods
require an MLP with a larger output layer of 90 and 111 units respectively,
while the multiple state phonetic model approach utilizes a different con-
nectionist architecture similar to the one described in [4]. The multiple state
phonetic model approach expands the single phonetic state model into a three
state model-a context-independent middle state, a generalized left-biphone
dependent first state, and a generalized right-biphone dependent last state.
To support this formulation a connectionist probability estimator consisting
of 17 MLPs is used, with 8 nets corresponding to each of the 8 generalized
left-biphones, 8 nets for the generalized right-biphones, and 1 net for the
context-independent states.

The context-independent MLP is trained as described in Section 3. The
major problem encountered with training context-dependent systems is the
lack of data for training highly specific phonetic context classes. One solu-
tion, adapted from [4], is to initialize the context specific MLP training with
weights from a more general context net. Thus, our generalized triphone
context-dependent network is trained by bootstrapping from the previously
trained context-independent MLP. The left and right broad categories of our
generalized triphones are clustered according to the place of articulation in
the vocal tract. As noted in [4], since the training is initialized from a context-
dependent net, it is important to smooth the context-dependent priors when
converting the context-dependent posterior probabilities to likelihoods. Simi-
larly, our context-dependent triphone net and the set of multiple state model
MLPs are trained by bootstrapping from the generalized triphone context-
dependent MLP. To limit the number of free parameters and training time for
the context-dependent nets, only the hidden-to-output weights were trained.
No degradation in recognition performance was found in comparison with
training all the weights, as determined by a pilot experiment that was done
on the generalized triphone context-dependent training.
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half of the deletion error rate. We chose not to repair this with a word-
specific phone model for oh since this solution would not generalize well
to the large vocabulary case.

" A class bigram might be over-smoothing the word pair transition prob-
abilities because the corpus was obtained from street addresses and zip
codes. To test this, a new language model was obtained by merging
the class bigram with a bigram by averaging their corresponding word
pair transition probabilities. This improves the context-independent
(200HU) word level recognition error rate from 8.2% to 7.5%, and the
generalized triphone with cross-word context-dependence model from
6.2% to 5.8%. All subsequent experiments on the Numbers'93 task are
performed using this merged language model.

" Our hybrid recognition method seems to scale easily over a wide range
of task sizes, and still achieves good recognition performances.

However, all of these conclusions needed to be confirmed on a final test set for
which no design decisions or recognition parameter settings (e.g., language
scaling) would be altered.

4.4 Results on Final Test Set

Table 2: Word recognition error in % on the Numbers'93 final test set for the
context-dependent experiments. This set of results were obtained using the
same parameter settings as the development set.

Sub Del Ins W.Er S.Er # Params
Context-Independent (200HU) 7.2 2.3 2.0 11.5 28.6 38.8K
Context-Independent (400HU) 7.6 2.6 1.4 11.6 27.9 77.6K
Generalized-triphone Context 5.7 2.3 1.3 9.2 23.4 48.6K
Gen-triphone w/ Xword-Context 4.6 1.9 1.7 8.1 22.4 72.0K

For the Numbers'93 test set, increasing the size of the context-independent
MLP estimator to include context-dependent units yields an error rate re-
duction of 30%. This is at the cost of an 86% increase on parameter size.
On this test set, the improvement appears to be associated with incorpo-
rating contextual information since increasing the number of parameters by
merely using a larger hidden layer did not improve performance. The final
test set provided by CSLU contains 633 sentences, but 249 of these were elim-
inated from the final testing because they contain ordinal numbers, which did
not appear in the training nor the development sets. We feel that a much
larger test set may be required in order to have a more precise evaluation
of the various systems. Nevertheless, the results from both the development
and the test sets indicates that incorporating context-dependence improves
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recognition performance signJf[cantiy• •t is likely that these approaches will
o ........ •e•. to our larger tas!,:s.

•cd; U,_e Bellcore isolated Digits anci %]he ..Xumbers93 database have been
used by other speech research laboratories: but, the res•its have not been
,,vide!)• published. In the meantJnle, we tested our recognizer on the standard
Ti.i3<!ST Connected-Digits Recognition Task ("TI-Digits•;) [6]. While this

conDus is inherently less realist.it since it was recorded in an artificial studio
sil-uatio, n --:•h

•,,,•L_• wide bandwidth, it has been used by many wel! developed
,-_:.,s•.en•(•.•., [2, 8]), so that it wi!! be a calibration point for our methods
on small vocabulary size tasks. Ever since this corpus was made available
b_ 10S".• :• it has became a quasi standard •or ..... benchmarking small vocabulary
s-,ea!:er-indeoendent recognition systems. The error ra•e has reduced by more
tha;• a factor of 5 since the first, published results.

_-dos of d2e current state of the art T'i£-Digits recognizer systems use wholeS .... •.p
,,.•,,_.,- modeling, cross-word con•ex>dependence, gender dependent, models,
and more elaborate training procedures. Currently, the Rest reported Ti-
DiN.o ..... .... recogmzer uses whole worr4 mode] v,_tn rater-word triphone context.
depen,:!ence, continuous density HMM for acoustic mode!ing• a training pro-
cedure that performs string error rat, e _•ninimization, and _X-best fbr decod-
in• [2]. This system yields an error rate of 0.24'70 on word leve! and 0.72%

on strin• level. A relative!y simo]e h!brid HMM-MLP system that does not
S' ' oe•de• deoendence nor context dependence (but still use whole-word

n!ocel © __ .
models) ]de]ds !n error rate of" 0.89•0 on the word ievei and 2.51• on the

[ o
"•';•-• level p]. Kov:ever. when the likelihood estimations fl'om this MLP

<.s•ern are con-,})b•e•i wit!-, ' -" mu•.u-P.•-.,,:auss•an likelihoods, the •esulting error
race is @.59•: on the word level and 1.7• on t.he string level.

E'or our e:•:oeriment, a total of 8628 sencences [I,202,889 frames) are used for
tra;ning and development, while 8700 sem•ences are used for testing. Similar
tcothe-" laboratories, the speech data is digitally filtered to telephone band-
w:¢£1• LoOu±lz - 3.21<nz; and downsampied to 8kHz. Since we wished to use
the techniques that were developed for large vocabulary recognition on the
small tasks• no specialized structures designed with knowledge of the prob-
ien: were used in developing this system. HoweveL t.o fully take advantage
of• the t!-emendous number of training patterns• we used a larger MLP than
v:e ]mad used on Numbers'93• with 1000 hidden units. The recognition result
aft!k- four iterations of training on our nhonemzc Rased context-independent
SFSCen2 was 0.9% word error rate and 2.Tc/• string error rate.

This recognition result is comparable to that of the whole-word model Rased
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hybrid system reported in [8] at the expense of using more parameters. Since
whole-word modeling is not the objective of ICSI's research on large vocab-
ulary size continuous speech recognition, we are unlikely to develop such an
approach for the TI-Digits database. However, incorporating gender depen-
dence and cross-word context dependence should improve the performance of
this particular system significantly.

6 Conclusion

In this paper, we reported experimental results on extending ICSI's speech
recognition method, developed for large vocabulary size continuous speech
recognition, to digits and numbers. The Bellcore isolated digits task was used
to calibrate our methods, and then the approach was ported to a task with
continuously and spontaneously spoken numbers; both were recorded over
the public-switched telephone network. From working with these databases,
we have found that training and recognition could be performed in virtually
the same way that we have done for our large vocabulary size tasks, and that
further specialized knowledge was not required. Due to the moderate size
of the Numbers'93 corpus, a series of experiments with context-dependent
networks were made possible, resulting in good improvements for this task
over our standard context-independent system. Despite its small vocabulary
size, the Numbers'93 corpus is difficult due to its inherently high confusibility
factor in the vocabularies, spontaneity of the utterances, and the acoustic
channel effects introduced by the telephone network. CSLU has announced
plans to distribute the Numbers corpus, and so we hope to see how other
sites compare on this task in the coming year. In the meantime, we tested
our recognizer on the standard TI Connected Digits corpus. The error rate
from our baseline system is higher than a number of other dedicated systems
reported over the last few years, but we believe that a more comparable result
can be obtained if we were to incorporate cross-word context-dependence and
gender dependence. Both of these improvements would generalize to larger
tasks as well, although for cases with many context-dependent categories we
would not tend to simply associate network outputs with categories; however,
as we and others have noted in the past, approaches with multiple networks
or multiple output layers will work for this purpose.

Nonetheless, the results presented here appear to show quite convincingly
that methods that were developed for much larger tasks scaled fairly easily
(and without fundamental changes) to completely different and smaller tasks.
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